GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Acoustic reflection signatures of four hydro-carbon seeps were classified using near-bottom 25-kHz echosounder profiles. Echo patterns were compared with ground-truth data obtained by submersible observations and shallow coring. Six echo types were distinguished: strong reflections from (1) exposed or (2) buried hard substrates, such as authigenic carbonate or gas hydrate; acoustic scattering in (3) unlayered or (4) layered sediments owing to gas, shells, or disseminated carbonates; (5) attenuation caused by gas; and (6) undisturbed sediments. Echo type distributions suggest that high spatial variability indicates a younger, vigorous seep, whereas extensive hard substrate implies an older, encrusted seep.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 13 (10). Q10022.
    Publication Date: 2017-07-28
    Description: A unique set of ferromanganese crusts and nodules collected from Shatsky Rise (SR), NW Pacific, were analyzed for mineralogical and chemical compositions, and dated using Be isotopes and cobalt chronometry. The composition of these midlatitude, deep-water deposits is markedly different from northwest-equatorial Pacific (PCZ) crusts, where most studies have been conducted. Crusts and nodules on SR formed in close proximity and some nodule deposits were cemented and overgrown by crusts, forming amalgamated deposits. The deep-water SR crusts are high in Cu, Li, and Th and low in Co, Te, and Tl concentrations compared to PCZ crusts. Thorium concentrations (ppm) are especially striking with a high of 152 (mean 56), compared to PCZ crusts (mean 11). The deep-water SR crusts show a diagenetic chemical signal, but not a diagenetic mineralogy, which together constrain the redox conditions to early oxic diagenesis. Diagenetic input to crusts is rare, but unequivocal in these deep-water crusts. Copper, Ni, and Li are strongly enriched in SR deep-water deposits, but only in layers older than about 3.4 Ma. Diagenetic reactions in the sediment and dissolution of biogenic calcite in the water column are the likely sources of these metals. The highest concentrations of Li are in crust layers that formed near the calcite compensation depth. The onset of Ni, Cu, and Li enrichment in the middle Miocene and cessation at about 3.4 Ma were accompanied by changes in the deep-water environment, especially composition and flow rates of water masses, and location of the carbonate compensation depth. Key Points - Fe-Mn crusts can have a diagenetic component - Mid-latitude N. Pacific deep-water Fe-Mn crusts are uniquely enriched in Cu, Th, Li - Temporal changes in deep-ocean geochemical processes are recorded
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-05
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Invited talk] In: AGU Fall Meeting, 14.12.-19.12, San Francisco, California, USA .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Description: The objectives for Expedition 352 were to drill through the entire volcanic sequence of the Bonin fore arc to 1. Obtain a high-fidelity record of magmatic evolution during subduction initiation and early arc development, 2. Test the hypothesis that fore-arc basalt lies beneath boninite and understand chemical gradients within these units and across the transition, 3. Use drilling results to understand how mantle melting processes evolve during and after subduction initiation, and 4. Test the hypothesis that the fore-arc lithosphere created during subduction initiation is the birthplace of suprasubduction zone (SSZ) ophiolites. Expedition 352 successfully cored 1.22 km of igneous basement and 0.46 km of over-lying sediment, providing diverse, stratigraphically controlled suites of fore-arc basalts (FAB) and boninite related to seafloor spreading and earliest arc development. FAB were recovered at the two deeper water sites (U1440 and U1441) and boninites at the two sites (U1439 and U1442) drilled upslope to the west. FAB lavas and dikes are depleted in high-field strength trace elements such as Ti and Zr relative to mid-ocean-ridge basalt but have relatively diverse concentrations of trace elements bezcause of variation in degrees of melting and amount of subducted fluids involved in their genesis. All FAB magmas underwent significant crystal fractionation in a persistent magma chamber system. Holes U1439C and U1442A yielded entirely boninitic lavas. We defined three boninite differentiation series based on variations in MgO, SiO2, and TiO2 concentrations of the parental magmas. Lavas in both pairs of holes have compositions that generally become more primitive and have lower TiO2 concentrations upward. The presence of dikes at the base of the sections at Sites U1439 and U1440 provides evidence that boninitic and FAB lavas are both underlain by their own conduit systems and that FAB and boninite group lavas are likely offset more horizontally than vertically. We thus propose that seafloor spreading related to subduction initiation migrated from east to west after subduction initiation and during early arc development. Initial spreading was likely rapid, and an axial magma chamber was present. Melting was largely decompressional during this period, but subducted fluids affected some melting. As subduction continued and spreading migrated to the west, the embryonic mantle wedge became more depleted, and the influence of subducted constituents dramatically increased, causing the oceanic crust to be built of boninitic rather than tholeiitic magma. The general decrease in fractionation upward reflects the eventual disappearance of persistent magma chambers, either because spreading rate was decreasing with distance from the trench or because spreading was succeeded by off-axis magmatism trenchward of the ridge. The extreme depletion of the sources for all boninitic lavas was likely related to the incorporation of mantle residues from FAB generation. This mantle depletion continued during generation of lower silica boninitic magmas, exhausting clinopyroxene from the mantle such that the capping high-Si, low-Ti boninites were generated from harzburgite. Additional results of the cruise include recovery of Eocene to recent deep-sea sediment that records variation in sedimentation rates with time resulting from variations in climate, the position of the carbonate compensation depth, and local structural control. Three phases of highly explosive volcanism (latest Pliocene to Pleistocene, late Miocene to earliest Pliocene, and Oligocene) were identified, represented by 132 graded air fall tephra layers. Structures found in the cores and reflected in seismic profiles show that this area had periods of normal, reverse, and strike-slip faulting. Finally, basement rock P-wave velocities were shown to be slower than those observed during logging of normal ocean crust sites.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-02-15
    Description: IODP Expedition 324 cored igneous rocks from Shatsky Rise, an oceanic plateau in the northwest Pacific Ocean that formed mainly during late Jurassic and Early Cretaceous times. We selected 60 samples from 3 different holes for Thellier–Thellier palaeointensity determinations. Induced and remanent magnetization curves measured at low- and high-temperature suggest a diverse and complex magnetic mineralogy, with large variations in Ti content and oxidation state. Hysteresis and FORC measurements show that most samples contain single-domain magnetic grains. After carrying out the palaeointensity determinations, only 9 samples satisfied all reliability criteria. These gave palaeointensity values between 16.5 and 21.5 μT, which correspond to average VDM values of (4.9 ± 0.2)  x 10 22 Am 2 for an estimated age of 140–142 Ma. This value is lower than that for the recent field, which agrees with the hypothesis of a Mesozoic Dipole Low.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Valdivia Bank is an oceanic plateau in the South Atlantic formed by hot spot magmatism at the Mid-Atlantic Ridge during the Late Cretaceous. It is part of the Walvis Ridge, an aseismic ridge and seamount chain widely considered to be formed by age-progressive volcanism from the Tristan-Gough plume. To better understand the formation and history of this edifice, we developed a bathymetric map of Valdivia Bank by merging available multibeam echosounder data sets with a bathymetry grid based mainly on satellite altimetry (SRTM15+). The bathymetric map reveals previously unresolved features including extensive rift grabens, volcanic mounds and knolls, and large-scale sediment transport systems. After Valdivia Bank was emplaced and probably eroded at sea level, it underwent a period of rifting, followed by a secondary magmatic pulse that caused regional uplift to sea-level, followed by subsidence to current depths. Shallow banks at depths of ∼1,000 m are the result of a thick sediment pile atop uplifted volcanic crust. Several shallower mounds (∼1,000–520 m) and a guyot (∼220 m) likely resulted from coral reef growth atop one or more volcanic pedestals formed during the younger Cenozoic magmatic event. As sediments accumulated on the shallow platforms, sediment transport systems developed as gullies, channels and mass transport deposits carved valleys and troughs, shedding sediment into abyssal fans at the plateau base. The new bathymetric map demonstrates that oceanic plateaus are geologically active long after initial emplacement. Key Points - A bathymetry map was constructed for Valdivia Bank from multibeam data merged with satellite altimetry-predicted depths - Valdivia Bank experienced extension, forming rifts, and secondary volcanism, uplift, and exposure, then was capped by carbonate sediments - Valdivia Bank shows evidence of mass wasting, partly triggered by Cenozoic uplift and erosion, but also owing to sediment cap instability
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Valdivia Bank (VB) is a Late Cretaceous oceanic plateau formed by volcanism from the Tristan-Gough hotspot at the Mid-Atlantic Ridge (MAR). To better understand its origin and evolution, magnetic data were used to generate a magnetic anomaly grid, which was inverted to determine crustal magnetization. The magnetization model reveals quasi-linear polarity zones crossing the plateau and following expected MAR paleo-locations, implying formation by seafloor spreading over ∼4 Myr during the formation of anomalies C34n-C33r. Paleomagnetism and biostratigraphy data from International Ocean Discovery Program Expedition 391 confirm the magnetic interpretation. Anomaly C33r is split into two negative bands, likely by a westward ridge jump. One of these negative anomalies coincides with deep rift valleys, indicating their age and mechanism of formation. These findings imply that VB originated by seafloor spreading-type volcanism during a plate reorganization, not from a vertical stack of lava flows as expected for a large volcano. Key Points - Valdivia Bank is characterized by quasi-linear magnetic anomalies that are parallel to the inferred paleo-Mid-Atlantic Ridge - Magnetic anomalies imply that the plateau becomes younger E-W consistent with formation via seafloor spreading during anomalies C34n-C33r - Rift valleys, division of C33r, and anomaly curvature imply complex ridge tectonics and a ridge jump
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-23
    Description: The past ∼200 million years of Earth's geomagnetic field behavior have been recorded within oceanic basalts, many of which are only accessible via scientific ocean drilling. Obtaining the best possible paleomagnetic measurements from such valuable samples requires an a priori understanding of their magnetic mineralogies when choosing the most appropriate protocol for stepwise demagnetization experiments (either alternating field or thermal). Here, we present a quick, and non‐destructive method that utilizes the amplitude‐dependence of magnetic susceptibility to screen submarine basalts prior to choosing a demagnetization protocol, whenever conducting a pilot study or other detailed rock‐magnetic characterization is not possible. We demonstrate this method using samples acquired during International Ocean Discovery Program Expedition 391. Our approach is rooted in the observation that amplitude‐dependent magnetic susceptibility is observed in basalt samples whose dominant magnetic carrier is multidomain titanomagnetite (∼TM 60–65 , (Ti 0.60–0.65 Fe 0.35–0.40 )Fe 2 O 4 ). Samples with low Ti contents within titanomagnetite or samples that have experienced a high degree of oxidative weathering do not display appreciable amplitude dependence. Due to their low Curie temperatures, basalts that possess amplitude‐dependence should ideally be demagnetized either using alternating fields or via finely‐spaced thermal demagnetization heating steps below 300°C. Our screening method can enhance the success rate of paleomagnetic studies of oceanic basalt samples. Plain Language Summary Oceanic basalts are ideal recorders of the Earth's magnetic field. To decipher magnetic histories recorded in rocks, paleomagnetists need to isolate the magnetization directions and intensities within rocks by one of two possible methods. One method typically involves progressively heating the samples to high temperatures. The other method involves exposing samples to alternating magnetic fields with increasing peak field intensities. Both of these methods are ultimately destructive to the original magnetization preserved within rocks. However, without knowledge of a given rock's magnetic mineralogy, randomly choosing thermal or alternating field demagnetization methods may result in high failure rates. We developed a pre‐screening method to help decide which cleaning method will likely be more successful for a given sample based on low‐field magnetic susceptibility measurements. These measurements do not affect the original magnetic information recorded in a rock, thereby permitting subsequent paleomagnetic studies on the same sample. Our technique can be performed as rapidly as 2 min per sample, is non‐destructive, and does not require complicated sample preparation. Key Points Paleomagnetic studies utilize either alternating field or thermal demagnetization, but it is difficult to choose the best protocol a priori Amplitude‐dependence of magnetic susceptibility measurements permits preliminary magnetic mineralogy characterization in submarine basalts Rapid amplitude‐dependence measurements may aid in deciding upon the best demagnetization protocol for submarine basalt samples
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-06-11
    Description: We have discovered evidence of a previously unrecognized, large-scale rotation of the Ontong Java Plateau (OJP) recorded in its basement palaeolatitudes. When palaeolatitude differences computed among Ocean Drilling Program Sites 807 and 1183–1187 are plotted versus their present-day site latitude differences, a systematic 2:1 slope bias is evident. While it is possible to resolve this bias by introducing ad hoc tilt corrections at all six sites, drilling records indicate relatively undisturbed conditions at Sites 1183 and 1185–1187. Of the possible causes of the bias, only whole plateau rotation resolves it while honouring the majority of published palaeolatitudes. This implies that only Sites 807 and 1184 palaeolatitudes, both questioned in the literature, are erroneous. A 9° northward dip previously reported at Site 1184 appears to stem from inclined deposition rather than post-emplacement deformation. We also estimate an 8° southward tilt correction at Site 807 to make the data set self-consistent. Based on the six sites analysed, we find that OJP may have experienced ~40° of clockwise rotation since its formation at ~123 Ma. In contrast, available Pacific absolute plate motion (APM) models predict less than 10° of rotation. If our analysis is correct, it suggests that the plateau moved independently of the Pacific Plate early in its history or that Pacific APM models for the Lower Cretaceous are unreliable. While our corrections to Sites 807 and 1184 combined with ~40° rotation resolve the internal inconsistencies, the mean palaeolatitude value of Ontong Java remains largely unchanged and is still anomalous with respect to the Pacific apparent polar wander path at ~123 Ma.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...