GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Villani, Fabio; Pucci, Stefano; Azzaro, Raffaele; Civico, Riccardo; Cinti, Francesca Romana; Pizzimenti, Luca; Tarabusi, Gabriele; Branca, Stefano; Brunori, Carlo Alberto; Caciagli, Marco; Cantarero, Massimo; Cucci, Luigi; D'Amico, Salvatore; De Beni, Emanuela; De Martini, Paolo Marco; Mariucci, Maria Teresa; Messina, A; Montone, Paola; Nappi, Rosa; Nave, Rosella; Pantosti, Daniela; Ricci, Tullio; Sapia, Vincenzo; Smedile, Alessandra; Vallone, Roberto; Venuti, Alessandra (2020): Surface ruptures database related to the 26 December 2018, MW 4.9 Mt. Etna earthquake, southern Italy. Scientific Data, 7(1), 42, https://doi.org/10.1038/s41597-020-0383-0
    Publication Date: 2023-06-08
    Description: We provide a database of the coseismic surface ruptures produced by the 26 December 2018 Mw 4.9 earthquake that struck the eastern flank of Mt. Etna (southern Italy), the largest active volcano in Europe. Despite its small size, this shallow earthquake caused an impressive system of coseismic surface ruptures extending about 8.5 km, along the trace of the NNW-trending active Fiandaca Fault. We performed detailed field surveys were performed in the epicentral region to describe the ruptures geometry and kinematics. These exhibit a dominant right-oblique sense of slip with coseismic displacement peaks of 0.35 m. The Fiandaca Fault is part of a complex active faults system affecting the eastern flank of Mt. Etna. Its seismic history indicates a prominent surface-faulting potential, so our study is essential for unravelling the seismotectonics of shallow earthquakes in volcanic settings, and contributes updating empirical scaling laws relating moderate-sized earthquakes and surface faulting. The collected observations have been parsed and organized in a concise database consisting of 874 homogeneous georeferenced records. The main features describing the coseismic ruptures are the following: ID, time of sample collection, location (latitude, longitude, elevation), type of rupture, type of affected substratum, attitude (dip angle, dip direction, strike), surface offset (opening, throw, strike slip, net slip), kinematics, slip vector attitude, width of the deformation zone.
    Keywords: Angle; Compass; DATE/TIME; Direction; earthquake; ELEVATION; Etna; ETNA; Fiandaca fault; Kinematics; LATITUDE; Length; LONGITUDE; Mount Etna, Sicily, Italia; Observation; Offset; Opening; ORDINAL NUMBER; Plunge; rupture; Strike; Strike-slip; Substratum; surface faulting; Throw; Trend; volcano; Width
    Type: Dataset
    Format: text/tab-separated-values, 6893 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Villani, Fabio; Civico, Riccardo; Pizzimenti, Luca; Pucci, Stefano; De Martini, Paolo Marco; Nappi, Rosa; Open EMERGEO Working Group (2018): A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy. Scientific Data, 5, 180049, https://doi.org/10.1038/sdata.2018.49
    Publication Date: 2023-07-10
    Description: We provide a database that embodies more than 7000 punctual observations of the coseismic surface geological effects following the 30 October 2016 Mw 6.5 earthquake that hit central Italy. This earthquake caused widespread surface ruptures over a 〉400 km2-wide mountainous area. The Open EMERGEO Working Group, originated by the collaboration of several European geological survey teams coordinated by the Istituto Nazionale di Geofisica e Vulcanologia, involved about 130 researchers to perform detailed geological field surveys in the epicentral region. These observations mostly include accurate description of the geometry and kinematics of ground breaks caused by primary surface faulting, and subordinately by landslides due to shaking. The database consists of georeferenced records containing both numeric and string fields in the form of a suitable .txt file.
    Keywords: Angle; Central_Italy_earthquake; DATE/TIME; Direction; ELEVATION; Europe, Italy; Group; LAND; LATITUDE; Length; LONGITUDE; Observation; Offset; Opening; ORDINAL NUMBER; Plunge; Rake; Rock type; Sampling/measurement on land; Strike; Throw; Trend
    Type: Dataset
    Format: text/tab-separated-values, 51320 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-13
    Description: This article has been accepted for publication in Geophysical Journal Internationa ©: 2017 Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
    Description: We present a 2-D subsurface image of the Paganica Fault from a high-resolution refraction tomography and detailed geological investigation carried out across part of the northwestern segment of the 20-km-long Paganica–San Demetrio fault-system, and which was responsible of the 2009 April 6 Mw 6.1 L’Aquila earthquake (central Italy). We acquired two seismic profiles crossing the Paganica basin with a dense-wide aperture configuration. More than 30 000 P wave first-arrival traveltimes were input to a non-linear tomographic inversion. The obtained 250–300 m deep 2-D Vp images illuminate the shallow portion of the Paganica Fault, and depict additional unreported splays defining a complex half-graben structure. We interpret local thickening of low-Vp (〈2400 m s−1) and intermediate-Vp (2600–3400 m s−1) regions as syn-tectonic clasticwedges above a high-Vp (3800–5000ms−1) carbonate basement. These results are condensed in a 4.2-km-long section across the Paganica basin, clearly indicating that the Paganica Fault is a mature normal fault cutting the whole upper ∼10 km of the crust. We evaluate a minimum cumulative net displacement of 650 ± 90 m and a total heave of 530 ± 65 m accomplished by the Paganica Fault, respectively. In the conservative hypothesis that the extension started during the Gelasian (1.80–2.59 Ma),we obtain a minimum long-term slip-rate of 0.30 ± 0.07 mm yr−1 and an extension-rate of 0.25 ± 0.06 mm yr−1, respectively. Considering the regional averaged extensional field of ∼1 mm yr−1 obtained from geodetic and geological analyses at 104 yr timescale, we infer that the Paganica Fault accounts for ∼20 per cent of the NE-extension affecting this zone of the central Apennines axis due to the concurrent activity of other parallel normal fault-systems nearby (e.g. the Liri, Velino-Magnola, L’Aquila-Celano and Gran Sasso fault-systems).
    Description: Published
    Description: 403-423
    Description: 1T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-12
    Description: In case of moderate to strong earthquakes (generally for M 〉 5.5), coseismic slip along a fault can reach directly the ground surface and produce surface faulting. Although scarcely considered in the Italian legislation, surface faulting hazard can have a relevant societal impact because it exposes to substantial risk urban areas and/or important infrastructures, facilities and critical lifelines that are settled or planned in coincidence of an active and capable fault trace. In this paper we present a case study from the area hit by the Mw 6.1 April 6, 2009 L’Aquila earthquake (Central Italy), where buildings and critical lifelines located across or near the coseismic surface ruptures suffered significant damage. High resolution (1 m) LiDAR topographic data contributed to the assessment of surface faulting hazard through a better imaging of the surface geometrical arrangement of the earthquake causative fault and through the analysis of the spatial relationships between active fault splays and critical lifelines and infrastructures.
    Description: Published
    Description: 345-347
    Description: 2T. Deformazione crostale attiva
    Description: N/A or not JCR
    Keywords: LIDAR ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-22
    Description: We study the October 30th 2016 Norcia earthquake (MW 6.5) to retrieve the rupture history by jointly inverting seismograms and coseismic GPS displacements obtained by dense local networks. The adopted fault geometry consists of a main normal fault striking N155°and dipping 47° belonging to the Mt. Vettore‐Mt. Bove fault system (VBFS) and a secondary fault plane striking N210° and dipping 36° to the NW. The coseismic rupture initiated on the VBFS and propagated with similar rupture velocity on both fault planes. Up‐dip from the nucleation point, two main slip patches have been imaged on these fault segments, both characterized by similar peak‐slip values (~3 m) and rupture times (~3 s). After the breakage of the two main slip patches, coseismic rupture further propagated southeastward along the VBFS, rupturing again the same fault portion that slipped during the August 24th earthquake. The retrieved coseismic slip distribution is consistent with the observed surface breakages and the deformation pattern inferred from InSAR measurements. Our results show that three different fault systems were activated during the October 30th earthquake. The composite rupture model inferred in this study provides evidences that also a deep portion of the NNE‐trending section of the Olevano‐Antrodoco‐Sibillini (OAS) thrust broke co‐seismically, implying the kinematic inversion of a thrust ramp. The obtained rupture history indicates that, in this sector of the Apennines, compressional structures inherited from past tectonics can alternatively segment boundaries of NW‐trending active normal faults or break co‐seismically during moderate‐to‐large magnitude earthquakes.
    Description: Published
    Description: 2943-2964
    Description: 3T. Sorgente sismica
    Description: 3IT. Calcolo scientifico
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-15
    Description: An Mw 6.1, devastating earthquake, on April 6, 2009, struck the Middle Aterno Valley (Abruzzi Apennines, Italy) due to the activation of a poorly known normal fault system. Structural analysis of the fault population and investigation of the relationships with the Quaternary continental deposits through integrated field and laboratory techniques were conducted in order to reconstruct the long-term, tectono-sedimentary evolution of the basin and hypothesize the size of the fault segment. A polyphasic evolution of the Middle Aterno Valley is characterized by a conjugate, ∼E-W and ∼NS-striking fault system, during the early stage of basin development, and by a dip-slip, NW-striking fault system in a later phase. The old conjugate fault system controlled the generation of the largest sedimentary traps in the area and is responsible for the horst and graben structures within the basin. During the Early Pleistocene the E-W and NS system reactivated with dip-slip kinematics. This gave rise to intra-basin bedrock highs and a significant syn-tectonic deposition, causing variable thickness and hiatuses of the continental infill. Subsequently, since the end of the Early Pleistocene, with the inception of the NW-striking fault system, several NW-strands linked into longer splays and their activity migrated toward a leading segment affecting the Paganica-San Demetrio basin: the Paganica-San Demetrio fault alignment. The findings from this work constrain and are consistent with the subsurface basin geometry inferred from previous geophysical investigations. Notably, two major elements of the ∼E-W and ∼NS-striking faults likely act as transfer to the nearby stepping active fault systems or form the boundaries, as geometric complexities, that limit the Paganica-San Demetrio fault segment overall length to 19 ± 3 km. The resulting size of the leading fault segment is coherent with the extent of the 6 April 2009 L'Aquila earthquake causative fault. The positive match between the geologic long-term and coseismic images of the 2009 seismogenic fault highlights that the comprehensive reconstruction of the deformation history offers a unique contribution to the understanding faults seismic potential.
    Description: MIUR (Italian Ministry of Education, University and Research) project “FIRB Abruzzo - High-resolution analyses for assessing the seismic hazard and risk of the areas affected by the 6 April 2009 earthquake”, ref. RBAP10ZC8K_005 and RBAP10ZC8K_007, and by Agreement INGV-DPC 2012–2021
    Description: Published
    Description: 30-66
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Quaternary geology ; L'Aquila earthquake ; structural geology ; Middle Aterno Valley ; neotectonics ; active fault ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-12
    Description: The 2016–2017 Amatrice-Norcia seismic sequence was triggered by the reactivation of a complex NNW-SSE trending, WSW-dipping normal fault system cross-cutting the Umbria-Marche fold and thrust belt near M. Vettore. This fault system produced clear and impressive co-seismic ruptures on normal faults in the hangingwall of the M. Sibillini thrust, whereas ruptures in the footwall were observed, but less clear. As a result, a strong controversy exists in the literature about the geometry of the seismogenic faults, their relationships with preexisting thrusts, and the location of normal-faulting rupture tips. In this work, we present a 3D geological model of the M. Vettore area located between the Castelluccio basin and the outcrop of the M. Sibillini thrust, where the most evident co-seismic ruptures have been observed. The model shows the relationship between the ruptured normal faults and the M. Sibillini thrust, and was constructed using a grid of 14 geological crosssections parallel and orthogonal to the main structural elements (i.e. normal faults and thrusts) down to a depth of 3 km. The model was built using reference structural surfaces, such as the top of the Early Cretaceous Maiolica Fm., the M. Sibillini thrust and the main seismogenic normal faults belonging to the M. Vettore fault system. The 3D model has allowed us to calculate the vertical cumulative throw distribution for the M. Vettore normal faults. The cumulative geological throw of ca. 1300 m across the normal faults in the proximity of the M. Sibillini thrust indicates that the seismogenic fault system continues into the footwall of the thrust, displacing it in the sub-surface. The results of this study provide important constraints on the cross-cutting relationships between active normal and pre-existing compressional structures in seismically active areas, contributing to a better definition of the faults segmentation, and the related seismic hazard.
    Description: Published
    Description: 103938
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 2016-2017 Central Italy earthquake ; Apennines ; Cross-cutting relationships ; Inherited structures ; 3D structural model
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-07
    Description: In order to geometrically characterize the liquefaction features observed in the epicentral sector of the 2012 Emilia seismic sequence and to evaluate the potential for recording palaeoseismic features of the area, we performed two electric resistivity tomographic sections and 4 shallow corings, coupled with 14C datings and archaeological age estimates in selected sites. Preliminary results show that there is a good agreement between ERT sections and core-logs; moreover a major role in determining the scalar relationships of the liquefaction features is played by the local geomorphological and topographic setting. The high sedimentation rates obtained through core datings (4 – 20 mm/yr) suggest that the described methodological approach can cover time windows of only a few centuries, thus hardly encompassing, in this tectonic setting, a significant period for paleoseismological purposes.
    Description: Published
    Description: 206-209
    Description: 2T. Deformazione crostale attiva
    Description: N/A or not JCR
    Keywords: liquefaction ; earthquake ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The occurrence of the Mw 6.3, April 6, 2009 earthquake has highlighted how critical is the knowledge of the location and of the characteristics of the active faults in a seismic region. This is true not only as a contribution to the seismic hazard assessment but also for the local planning of residential areas, plants and infrastructures. The 2009 earthquake occurred on the Paganica normal fault (PF hereinafter) and produced 3 km-long, maximum 0.1 m-high surface rupture along its central section, and secondary slip along nearby tectonic structures. The PF consists of a prominent morphologic scarp formed by the tectonic juxtaposition of Pliocene-middle Pleistocene and late Pleistocene alluvial deposits, and by lower scarps in late Pleistocene-Holocene deposits. The fault, NW-SE striking and SW dipping, runs for a total length of about 20 km along the NE side of the Aterno River valley, a graben-type basin bounded by marked antithetic faults. The limited extent and the small throw of the 2009 surface ruptures, when compared to the size of the Paganica long-term fault scarp, suggest that the PF probably experienced larger Magnitude earthquakes than the 2009 seismic event. Thus, although the April 6, 2009 earthquake and associated surface faulting caused loss of lives and major damage, we believe that this event does not fully characterize the seismic hazard of the area. Therefore, a campaign of paleoseismological investigations is underway with the aim of defining the Max Magnitude, the average rate of displacement and the frequency of seismic events on the PF and on the nearby faults. An amazing “coseismic” trench, caved by the overpressure produced by the broken pipe of an aqueduct, provided the exposure of a 30-m wide fault zone of the PF. We show the preliminary results from the analysis of this site, as well as from other sites along the PF. In addition, we also present preliminary paleoseismological data from the antithetic Fossa fault. A major finding at this early stage of our field campaign is the recognition of large displacements (0.5 to 1 m) associated to individual events affecting deposits of Holocene age based on radiocarbon dating and pottery content.
    Description: Published
    Description: 2009 AGU Fall Meeting 14–18 December Moscone Convention Center Howard Street, Between Third & Fifth Sts. San Francisco, California, USA
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: paleoseismology ; 6 April 2009 L'Aquila earthquake ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-11
    Description: We provide a database of the surface ruptures produced by the 26 December 2018 Mw 4.9 earthquake that struck the eastern flank of Mt. Etna volcano in Sicily (southern Italy). Despite its relatively small magnitude, this shallow earthquake caused about 8 km of surface faulting, along the trace of the NNW-trending active Fiandaca Fault. Detailed field surveys have been performed in the epicentral area to map the ruptures and to characterize their kinematics. The surface ruptures show a dominant right-oblique sense of displacement with an average slip of about 0.09 m and a maximum value of 0.35 m. We have parsed and organized all observations in a concise database, with 932 homogeneous georeferenced records. The Fiandaca Fault is part of the complex active Timpe faults system affecting the eastern flank of Etna, and its seismic history indicates a prominent surface-faulting potential. Therefore, this database is essential for unravelling the seismotectonics of shallow earthquakes in volcanic areas, and contributes updating empirical scaling regressions that relate magnitude and extent of surface faulting.
    Description: Published
    Description: id 42
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Surface faulting ; Coseismic effects ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...