GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2019-03-07
    Description: Transport of anthropogenic aerosol into the Arc- tic in the spring months has the potential to affect regional climate; however, modeling estimates of the aerosol direct radiative effect (DRE) are sensitive to uncertainties in the mixing state of black carbon (BC). A common approach in previous modeling studies is to assume an entirely exter- nal mixture (all primarily scattering species are in separate particles from BC) or internal mixture (all primarily scat- tering species are mixed in the same particles as BC). To provide constraints on the size-resolved mixing state of BC, we use airborne single-particle soot photometer (SP2) and ultrahigh-sensitivity aerosol spectrometer (UHSAS) mea- surements from the Alfred Wegener Institute (AWI) Polar 6 flights from the NETCARE/PAMARCMIP2015 campaign to estimate coating thickness as a function of refractory BC (rBC) core diameter and the fraction of particles contain- ing rBC in the springtime Canadian high Arctic. For rBC core diameters in the range of 140 to 220 nm, we find av- erage coating thicknesses of approximately 45 to 40 nm, re- spectively, resulting in ratios of total particle diameter to rBC core diameters ranging from 1.6 to 1.4. For total par- ticle diameters ranging from 175 to 730 nm, rBC-containing particle number fractions range from 16% to 3%, respec- tively. We combine the observed mixing-state constraints with simulated size-resolved aerosol mass and number dis- tributions from GEOS-Chem–TOMAS to estimate the DRE with observed bounds on mixing state as opposed to assuming an entirely external or internal mixture. We find that the pan-Arctic average springtime DRE ranges from
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-14
    Description: Despite the potential importance of black carbon (BC) for radiative forcing of the Arctic atmosphere, ver- tically resolved measurements of the particle light scatter- ing coefficient (σsp ) and light absorption coefficient (σap ) in the springtime Arctic atmosphere are infrequent, espe- cially measurements at latitudes at or above 80◦ N. Here, re- lationships among vertically distributed aerosol optical prop- erties (σap, σsp and single scattering albedo or SSA), par- ticle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9 and 83.4◦ N from near the surface to 500 hPa. Airborne data collected during April 2015 are combined with ground- based observations from the observatory at Alert, Nunavut and simulations from the Goddard Earth Observing Sys- tem (GEOS) model, GEOS-Chem, coupled with the TwO- Moment Aerosol Sectional (TOMAS) model (collectively GEOS-Chem–TOMAS; Kodros et al., 2018) to further our knowledge of the effects of BC on light absorption in the Arctic troposphere. The results are constrained for σsp less than 15 Mm−1, which represent 98 % of the observed σsp, be- cause the single scattering albedo (SSA) has a tendency to be lower at lower σsp, resulting in a larger relative contribution to Arctic warming. At 18.4 m2 g−1, the average BC mass ab- sorption coefficient (MAC) from the combined airborne and Alert observations is substantially higher than the two aver- aged modelled MAC values (13.6 and 9.1 m2 g−1) for two different internal mixing assumptions, the latter of which is based on previous observations. The higher observed MAC value may be explained by an underestimation of BC, the presence of small amounts of dust and/or possible differences in BC microphysics and morphologies between the obser- vations and model. In comparing the observations and simulations, we present σap and SSA, as measured, and σap/2 and the corresponding SSA to encompass the lower modelled MAC that is more consistent with accepted MAC values. Me- dian values of the measured σap, rBC and the organic com- ponent of particles all increase by a factor of 1.8 ± 0.1, going from near-surface to 750 hPa, and values higher than the sur- face persist to 600 hPa. Modelled BC, organics and σap agree with the near-surface measurements but do not reproduce the higher values observed between 900 and 600 hPa. The dif- ferences between modelled and observed optical properties follow the same trend as the differences between the mod- elled and observed concentrations of the carbonaceous com- ponents (black and organic). Model-observation discrepan- cies may be mostly due to the modelled ejection of biomass burning particles only into the boundary layer at the sources. For the assumption of the observed MAC value, the SSA range between 0.88 and 0.94, which is significantly lower than other recent estimates for the Arctic, in part reflecting the constraint of σsp 〈 15 Mm−1. The large uncertainties in measuring optical properties and BC, and the large differ- ences between measured and modelled values here and in the literature, argue for improved measurements of BC and light absorption by BC and more vertical profiles of aerosol chemistry, microphysics and other optical properties in the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-15
    Description: Fire plays a pivotal role in shaping terrestrial ecosystems and the chemical composition of the atmosphere and thus influences Earth’s climate. The trend and magnitude of fire activity over the past few centuries are contro- versial, which hinders understanding of preindustrial to present-day aerosol radiative forcing. Here, we present evidence from records of 14 Antarctic ice cores and 1 central Andean ice core, suggesting that historical fire activity in the Southern Hemisphere (SH) exceeded present-day levels. To understand this observation, we use a global fire model to show that overall SH fire emissions could have declined by 30% over the 20th century, possibly because of the rapid expansion of land use for agriculture and animal production in middle to high latitudes. Radiative forcing calculations suggest that the decreasing trend in SH fire emissions over the past century largely compensates for the cooling effect of increasing aerosols from fossil fuel and biofuel sources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...