GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2022-01-31
    Description: The Maltese Islands, located in the central Mediterranean Sea, are intersected by two normal fault systems associated with continental rifting to the south. Due to a lack of evidence for offshore displacement and insignificant historical seismicity, the systems are thought to be inactive and the rift-related deformation is believed to have ceased. In this study we integrate aerial, marine and onshore geological, geophysical and geochemical data from the Maltese Islands to demonstrate that the majority of faults offshore the archipelago underwent extensional to transtensional deformation during the last 20 ka. We also document an active fluid flow system responsible for degassing of CH4 and CO2. The gases migrate through carbonate bedrock and overlying sedimentary layers via focused pathways, such as faults and pipe structures, and possibly via diffuse pathways, such as fractures. Where the gases seep offshore, they form pockmarks and rise through the water column into the atmosphere. Gas migration and seepage implies that the onshore and offshore faults systems are permeable and that they were active recently and simultaneously. The latter can be explained by a transtensional system involving two right-stepping, right-lateral NW-SE trending faults, either binding a pull-apart basin between the islands of Malta and Gozo or associated with minor connecting antitethic structures. Such a configuration may be responsible for the generation or reactivation of faults onshore and offshore the Maltese Islands, and fits into the modern divergent strain-stress regime inferred from geodetic data.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Carbonate lithologies host considerable quantities of the Earth’s freshwater resources and partially supply a quarter of the global population with drinkable water. Carbonates constitute substantial amounts of the global coastlines, yet it is not known if and how they can sustain freshened groundwater offshore. Here, we use controlled source electromagnetic, seismic reflection, and core sample data to derive a lithological model for the eastern margin of the Maltese Islands and identify four distinct resistivity anomalies within the Upper Coralline Limestone, Globigerina Limestone, and Blue Clay formations. The anomalies hosted in the former are likely associated to low porosities, whereas the anomaly within the latter is indicative of pore fluid freshening. Hydrogeological modeling suggests that freshened pore fluids, emplaced during sea-level lowstands and preserved in low permeability units, are potentially still found within carbonate shelves. However, resource potential is low due to its relict nature and low permeability host environment. Key points ● Geophysical data and hydrogeological modeling are applied to detect offshore freshened groundwater in a semi-arid carbonate setting ● Globigerina Limestone and Blue Clay located offshore SE Malta likely host a disconnected offshore freshened groundwater body ● The resistive anomalies within the Upper Coralline Limestone are interpreted as localized porosity variations.Accepted Article This article is protected by copyright. All rights reserved. ● This OFG was emplaced during sea-level lowstands and preserved in low permeability units
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-04
    Description: Seismic microzonation represents a basic tool for prevention activity planning and land management. An extensive and detailed microzonation study was performed with reference to the territory of the Municipality of Cavezzo, damaged during the seismic sequence hitting Emilia-Romagna Region, Northern Italy, in 2012. In this paper, we discuss the work carried out to characterize the spatial variability of ground motion amplification due to local soil conditions in the municipality area. An inter- and multi-disciplinary approach is presented, involving geotechnical engineers, geophysicists, geologists and seismologists from different institutions, to thoroughly characterize the territory using complementary techniques with different level of resolution and confidence. A considerable amount of geomorphological, geological, hydrogeological, seismological, geotechnical and geophysical investigations was collected and processed for the purpose. A GIS-based (Geographic Information System) platform was initially setup to manage the gathered data, which now includes the results of about 1000 geotechnical and geophysical tests. Such an extended dataset was then used as a primary constraint for the creation of a comprehensive pseudo-3D geotechnical and seismo-stratigraphic model of the territory, consisting of a dense grid of one-dimensional vertical profiles to depict the variability of the soil properties over the area. The model was finally used as input for linear-equivalent ground response analysis. For the calculation of the amplification factors, special emphasis was given to the treatment and propagation of the uncertainties of the model parameters, whose different realizations have been accounted through a logic tree approach.
    Description: Published
    Description: 105722
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-04-22
    Description: The Maltese Islands, located in the central Mediterranean Sea, are intersected by two normal fault systems associated with continental rifting to the south. Due to a lack of evidence for offshore displacement and insignificant historical seismicity, the systems are thought to be inactive and the rift-related deformation is believed to have ceased. In this study we integrate aerial, marine and onshore geological, geophysical and geochemical data from the Maltese Islands to demonstrate that the majority of faults offshore the archipelago underwent extensional to transtensional deformation during the last 20 ka. We also document an active fluid flow system responsible for degassing of CH4 and CO2. The gases migrate through carbonate bedrock and overlying sedimentary layers via focused pathways, such as faults and pipe structures, and possibly via diffuse pathways, such as fractures. Where the gases seep offshore, they form pockmarks and rise through the water column into the atmosphere. Gas migration and seepage implies that the onshore and offshore faults systems are permeable and that they were active recently and simultaneously. The latter can be explained by a transtensional system involving two right-stepping, right-lateral NW-SE trending faults, either binding a pull-apart basin between the islands of Malta and Gozo or associated with minor connecting antitethic structures. Such a configuration may be responsible for the generation or reactivation of faults onshore and offshore the Maltese Islands, and fits into the modern divergent strain-stress regime inferred from geodetic data.
    Description: Published
    Description: 361-374
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...