GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The energy source for deep-sea chemosynthetic communities is reduced compounds, such as HS~, CH4, NHj or petroleum9'10, which may be carried in pore fluids from anoxic subsurface formations onto the oxygenated sea floor. Dissolved SH2S (H2S, HS", S"2), NH+ and CH4 are all present in brines that ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 317 (1985), S. 709-711 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The seep communities occur on patches of irregularly distributed black sediments, 5-10 m in diameter, which are found directly at the base of the Florida Escarpment. These black sediments contain up to 38% iron sulphide minerals1, and up to 8% organic carbon. These organic carbon concentrations are ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Geo-marine letters 13 (1993), S. 145-152 
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Single-channel seismic reflection profiles show evidence for areas of significant gas accumulation at the head of the Cape Fear Slide on the continental rise off North Carolina. Gas accumulation appears to occur beneath a gas hydrate seal in landward-dipping strata and in domed strata associated with diapirism. In addition, gas venting may have occurred near diapirs located at the head of the slide.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The effects of ion exclusion and isotopic fractionation associated with gas hydrate formation and decomposition in continental margin sediments are examined using simple mass balance calculations. In a closed system pore fluid salinity can be increased to brine levels and detectable changes in interstitial waterδ 18O can be caused by formation of significant amounts of interstitial gas hydrate. Time- and mass-dependent models indicate that given appropriate geometries, the diffusion of dissolved salts is sufficiently rapid and their supply is large enough to establish dissolved ion gradients that can be measured in sediments obtained from piston cores or boreholes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Geo-marine letters 20 (2000), S. 123-132 
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Nine submarine sinkholes have been surveyed and mapped with side-looking sonar and echo-sounder profiles in the Straits of Florida. These structures are irregularly distributed across the surface of the South Florida Margin, forming a discontinuous belt along the edge of the slope. The sinkholes occur in water depths too great to have ever been exposed above sea level, and some are several times larger than any known subaerial sinkholes in North America. Because most karst morphologies are the product of groundwater circulation, the distribution of submarine sinkholes in the Florida Straits may be directly related to the paleohydrology of the South Florida Platform.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Submarine pockmarks are common features on high-latitude continental shelves, yet the mechanisms for their formation are poorly understood. Here we propose an additional mechanism for the formation of high-latitude pockmarks involving freshwater ice rafting. Freshwater seeping upward through the sediments freezes at the sediment–water interface when bottom waters are below 0°C. Thin layers of the frozen water containing some sediment are buoyant and can rise off the bottom as small ice rafts, thereby excavating a seafloor depression over time. Sediment in the ice rafts becomes entrained in bottom currents and is dispersed over a wide area.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-25
    Description: Investigations of formation-fluid salinities in a transect from western Georgia to the edge of the Blake Plateau off the coast of Georgia show surprisingly similar hydrochemical features offshore and onshore. A fresh-brackish wedge of groundwater (〈25 g/kg total dissolved solids) lies beneath the shelf to a depth of ∼ 900 m. On land, brackish waters extend to a maximum depth of ∼ 1.2 km below sea level in Lowndes County, Georgia. In deeper horizons, hypersaline brines (〉 100 g/kg) occur in Lower Cretaceous (?) strata. These strata have a pronounced evaporitic (anhydritic) character in the offshore segment. Strong salinity gradients in interstitial waters signify buried evaporite deposits at drill sites beneath the Blake Plateau.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-06-28
    Description: Extensive ROV-based sampling and exploration of the seafloor was conducted along an eroded transform-parallel fault scarp on the northeastern side of the Guaymas Basin in the Gulf of California to observe the nature of fluids venting from the seafloor, measure the record left by methane-venting on the carbonates from this area, and determine the association with gas hydrate. One gas vent vigorous enough to generate a water-column gas plume traceable for over 800 m above the seafloor was found to emanate from a ∼10-cm-wide orifice on the eroded scarp face. Sediment temperature measurements and topography on a sub-bottom reflector recorded in a transform-parallel seismic reflection profile identified a subsurface thermal anomaly beneath the gas vent. Active chemosynthetic biological communities (CBCs) and extensive authigenic carbonates that coalesce into distinct chemoherm structures were encountered elsewhere along the eroded transform-parallel scarp. The carbon isotopic composition of methane bubbles flowing vigorously from the gas vent (−53.6±0.8‰ PDB) is comparable to methane found in sediment cores taken within the CBCs distributed along the scarp (−51.9±8.1‰ PDB). However, the δ13C value of the CO2 in the vent gas (+12.4±1.1‰ PDB) is very distinct from those for dissolved inorganic carbon (DIC) (−35.8‰ to −2.9‰ PDB) found elsewhere along the scarp, including underneath CBCs. The δ13C values of the carbonate-rich sediments and rocks exposed on the seafloor today also span an unusually large range (−40.9‰ to +12.9‰ PDB) and suggest two distinct populations of authigenic carbonate materials were sampled. Unconsolidated sediments and some carbonate rocks, which have lithologic evidence for near-seafloor formation, have negative δ13C values, while carbonate rocks that clearly formed in the subsurface have positive δ13C values (up to +23.0‰) close to that measured for CO2 in the vent gas. There appears to be two carbon sources for the authigenic carbonates: (1) deeply-sourced, isotopically heavy CO2 (∼+12‰); and (2) isotopically light DIC derived from local anaerobic oxidation of methane at the sulfate–methane interface in the shallow subsurface. Addition of isotopically light methane-derived carbon at the seafloor may completely mask the isotopically heavy CO2 signature (+12.4‰) in the underlying sediments. Thus, the authigenic carbonates may have formed from the same methane- and carbon dioxide-bearing fluid, but under different migration and alteration conditions, depending on how it migrated through the sediment column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-01-04
    Description: The major geochemical characteristics of Red Sea brine are summarized for 11 brine-filled deeps located along the central graben axis between 19°N and 27°N. The major element composition of the different brine pools is mainly controlled by variable mixing situations of halite-saturated solution (evaporite dissolution) with Red Sea deep water. The brine chemistry is also influenced by hydrothermal water/rock interaction, whereas magmatic and sedimentary rock reactions can be distinguished by boron, lithium, and magnesium/calcium chemistry. Moreover, hydrocarbon chemistry (concentrations and δ 13 C data) of brine indicates variable injection of light hydrocarbons from organic source rocks and strong secondary (bacterial or thermogenic) degradation processes. A simple statistical cluster analysis approach was selected to look for similarities in brine chemistry and to classify the various brine pools, as the measured chemical brine compositions show remarkably strong concentration variations for some elements. The cluster analysis indicates two main classes of brine. Type I brine chemistry (Oceanographer and Kebrit Deeps) is controlled by evaporite dissolution and contributions from sediment alteration. The Type II brine (Suakin, Port Sudan, Erba, Albatross, Discovery, Atlantis II, Nereus, Shaban, and Conrad Deeps) is influenced by variable contributions from volcanic/ magmatic rock alteration. The chemical brine classification can be correlated with the sedimentary and tectonic setting of the related depressions. Type I brine-filled deeps are located slightly off-axis from the central Red Sea graben. A typical " collapse structure formation " which has been defined for the Kebrit Deep by evaluating seismic and geomorphological data probably corresponds to our Type I brine. Type II brine located in depressions in the northern Red Sea (i.e., Conrad and Shaban Deeps) could be correlated to " volcanic intrusion-/extrusion-related " deep formation. The chemical indications for hydrothermal influence on Conrad and Shaban Deep brine can be related to brines from the multi-deeps region in the central Red Sea, where volcanic/magmatic fluid/rock interaction is most obvious. The strongest hydrothermal influence is observed in Atlantis II brine (central multi-deeps region), which is also the hottest Red Sea brine body in 2011 (*68.2 °C).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...