GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016258, doi:10.1029/2020JC016258.
    Description: This study assessed the effects of typhoons on sea surface pCO2 and CO2 flux in the northern South China Sea (SCS). During the passage of three major typhoons from May to August 2013, sea surface pCO2, surface seawater temperature (SST), and other meteorological parameters were continuously measured on a moored buoy. Surface water in the region was a source of CO2 to the atmosphere with large variations ranging from hours to months. SST was the primary factor controlling the variation of surface pCO2 through most of the time period. Typhoons are seen to impact surface pCO2 in three steps: first by cooling, thus decreasing surface pCO2, and then by causing vertical mixing that brings up deep, high‐CO2 water, and lastly triggering net uptake of CO2 due to the nutrients brought up in this deep water. The typhoons of this study primarily impacted air‐sea CO2 flux via increasing wind speeds. The mean CO2 flux during a typhoon ranged from 3.6 to 5.4 times the pretyphoon mean flux. The magnitude of the CO2 flux during typhoons was strongly inversely correlated with the typhoon center distance. The effect of typhoons accounted for 22% of the total CO2 flux in the study period, during which typhoons occurred only 9% of the time. It was estimated that typhoons enhanced annual CO2 efflux by 23–56% in the northern SCS during the last decade. As such, tropical cyclones may play a large and increasingly important role in controlling CO2 fluxes in a warmer and stormier ocean of the future.
    Description: This study was supported by the Marine Public Welfare Project of China (Grant 200905012), the Scientific Research Fund of the Second Institute of Oceanography of China (Grant JT1502), the Global Change and Air‐Sea Interaction project of China (Grant GASI‐03‐01‐02‐02), and the National Natural Sciences Foundation of China (Grant 91128212).
    Description: 2021-02-03
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-14
    Description: Autoclaved natural seawater collected in the North Pacific Ocean was used as a reference material for nutrients in seawater (RMNS) during an inter-laboratory comparison (I/C) study conducted in 2008. This study was a follow-up to previous studies conducted in 2003 and 2006. A set of six samples was distributed to each of 58 laboratories in 15 countries around the globe, and results were returned by 54 of those laboratories (15 countries). The homogeneities of samples used in the 2008 I/C study, based on analyses for three determinants, were improved compared to those of samples used in the 2003 and 2006 I/C studies. Results of these I/C studies indicate that most of the participating laboratories have an analytical technique for nutrients that is sufficient to provide data of high comparability. The differences between reported concentrations from the same laboratories in the 2006 and 2008 I/C studies for the same batch of RMNS indicate that most of the laboratories have been maintaining internal comparability for two years. Thus, with the current high level of performance in the participating laboratories, the use of a common reference material and the adaptation of an internationally accepted nutrient scale system would increase comparability among laboratories worldwide, and the use of a certified reference material would establish traceability. In the 2008 I/C study we observed a problem of non-linearity of the instruments of the participating laboratories similar to that observed among the laboratories in the 2006 I/C study. This problem of non-linearity should be investigated and discussed to improve comparability for the full range of nutrient concentrations. For silicate comparability in particular, we see relatively larger consensus standard deviations than those for nitrate and phosphate.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights: • Ultrahigh seawater DMS levels (〉40 nM) were detected near the Antarctic Peninsula. • Ultrahigh DMS was only found in waters of algal bloom and abundant microzooplankton. • Grazing of abundant microzooplankton possibly cause the ultrahigh seawater DMS. Oceanic dimethylsulfide (DMS) is hypothesized to impact cloud formation and consequently the solar radiation budget of Earth's surface. Ultrahigh seawater DMS concentrations, up to hundreds of nM, have been observed in the Southern Ocean, attributing to concurrent high phytoplankton biomass. However, phytoplankton biomass cannot fully explain the mechanism leading to those extreme values. Herein, measurements, including seawater DMS concentrations and other biological and environmental parameters, were collected in the water column during the austral summer of 2015–2016 at the tip of the Antarctic Peninsula. Notably, large-scale ultrahigh seawater DMS concentrations (up to 85.2 nM and generally above 40 nM in the upper layer) was observed only in areas with co-existing phytoplankton blooms and abundant microzooplankton (indicated by ciliates, whose abundance and biomass were above 1000 ind L-1 and 2 μg L-1, respectively), implying that the grazing of abundant microzooplankton possibly causes the ultrahigh seawater DMS concentrations during the bloom seasons in the Southern Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...