GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. ©American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 89 (2008): 1307-1324, doi:10.1175/2008BAMS2508.1.
    Description: Greenland has a major influence on the atmospheric circulation of the North Atlantic–western European region, dictating the location and strength of mesoscale weather systems around the coastal seas of Greenland and directly influencing synoptic-scale weather systems both locally and downstream over Europe. High winds associated with the local weather systems can induce large air–sea fluxes of heat, moisture, and momentum in a region that is critical to the overturning of the thermohaline circulation, and thus play a key role in controlling the coupled atmosphere–ocean climate system. The Greenland Flow Distortion Experiment (GFDex) is investigating the role of Greenland in defining the structure and predictability of both local and downstream weather systems through a program of aircraft-based observation and numerical modeling. The GFDex observational program is centered upon an aircraft-based field campaign in February and March 2007, at the dawn of the International Polar Year. Twelve missions were flown with the Facility for Airborne Atmospheric Measurements' BAe-146, based out of the Keflavik, Iceland. These included the first aircraft-based observations of a reverse tip jet event, the first aircraft-based observations of barrier winds off of southeast Greenland, two polar mesoscale cyclones, a dramatic case of lee cyclogenesis, and several targeted observation missions into areas where additional observations were predicted to improve forecasts. In this overview of GFDex the background, aims and objectives, and facilities and logistics are described. A summary of the campaign is provided, along with some of the highlights of the experiment.
    Description: The GFDex would not have been possible without the dedication and flexibility shown by all at the FAAM, DirectFlight, and Avalon. GFDex was funded by the Natural Environmental Research Council (NE/C003365/1), the Canadian Foundation for Climate and Atmospheric Sciences (GR-641), and the European Union Fleet for Airborne Research (EUFAR) and European Union Coordinated Observing System (EUCOS) schemes.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-05
    Description: Based on statistical analysis using observations and idealized model simulations, previous studies have revealed the potential response of early-winter atmospheric circulation and temperature anomalies to November Ural blocking (UB) anomalies. Using a large number of coupled simulations, this study found that the response is sensitive to the intensity of November mid-latitude westerly jet over Eurasia. Stronger-than-normal November UB without a significantly weakened westerly jet could not cause significant atmospheric response in early-winter. By contrast, stronger-than-normal November UB with a significantly weakened jet would be followed by a warmer Arctic-colder Eurasia (WACE) pattern in December. The significantly weakened westerly jet favors stronger upward propagation of planetary waves, which causes stronger weakening and longer persistence of the stratospheric polar vortex. This stratospheric response persists into December and propagates downward into the troposphere interfering with planetary waves (especially wavenumber-1). The lead-lag UB-WACE linkage modulated by mid-latitude jet may have implications for sub-seasonal predictability.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...