GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: ADP-glucose pyrophosphorylase ; cDNAs ; gene organisation ; polypeptides ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA clone (WL : AGA.1) encoding wheat leaf ADP-glucose pyrophosphorylase has been isolated from a λgt11 expression library, by immunological screening with anti-spinach leaf ADP-glucose pyrophosphorylase serum. The WL : AGA.1 cDNA is 948 bp long and contains approximately 55% of the complete wheat leaf ADP-glucose pyrophosphorylase mRNA sequence, estimated from Northern blot experiments. A wheat endosperm cDNA library was subsequently constructed in λgt11 and six clones hybridising to the cDNA insert of clone WL : AGA.1 were isolated. The longest of these wheat endosperm ADP-glucose pyrophosphorylase cDNAs, clone WE : AGA.7, is nearly full-length (1798 bp), indicated by Northern blot analysis of wheat endosperm mRNA and nucleotide sequence analysis. Southern hybridisation analysis and restriction enzyme mapping indicated that the wheat leaf and wheat endosperm ADP-glucose pyrophosphorylase cDNAs and genes are members of two distinct gene families. In addition, restriction enzyme mapping revealed polymorphism in the wheat endosperm ADP-glucose pyrophosphorylase cDNAs, indicating the existence of at least two wheat endosperm ADP-glucose pyrophosphorylase gene sub-families. Subsequent nucleotide sequence analysis indicates that there is approximately 55% identity between wheat leaf and wheat endosperm ADP-glucose pyrophosphorylase cDNAs. In contrast, members of each sub-family of endosperm cDNA, represented by clones WE : AGA.3 and WE : AGA.7, are 96% identical.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: transcription ; promoter ; anaerobic stress ; anaerobic responsive element ; alcohol dehydrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The functional properties of the anaerobic responsive element (ARE) of the maize Adh1 gene have been analysed using a transient expression assay in electroporated maize protoplasts. The ARE functions in both orientations although inversion of the ARE sequence relative to the TATA box element produces slightly weaker promoter activity under anaerobic conditions and elevated expression under aerobic conditions. Promoter activity under anaerobic conditions is proportional to the number of complete ARE sequences in the Adh1 promotor. The ARE contains two sub-regions and dimers of sub-region II are as efficient as the wild-type sequence in activating gene expression under anaerobic conditions. However, sub-region I dimers do not appear capable of inducing gene expression in response to anaerobic stress. We conclude that sub-region II is essential for anaerobic induction of gene expression. Reporter gene expression remains constant when the spacing between sub-regions of the ARE is increased up to at least 64 bp, but increased spacing of 136 bp or greater abolishes expression in both aerobic and anaerobic conditions, indicating that a close association of the two sub-regions is required both for anaerobic responsiveness and for maximal levels of aerobic gene expression. When the ARE is placed upstream of position −90 of the CaMV 35S promoter, the ARE produces a high level of expression in both aerobic and anaerobic conditions. The general enhancement of gene expression driven by the hybrid ARE/35S promoter in aerobic conditions requires an intact sub-region II motif since mutation or deletion of sub-region II from the hybrid promoter reduces the level of expression to that observed for the truncated 35S promoter alone. In addition, mutation of the sub-region I sequences in the ARE/35S hybrid promoter does not significantly reduce expression in aerobic conditions, relative to pARE/Δ35S(-90), suggesting that sub-region I does not contribute to this general enhancer function.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: Eucalyptus globulus ; floral meristem identity gene ; flower development ; in situ hybridization ; LEAFY homologue
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two genes cloned from Eucalyptus globulus, Eucalyptus LeaFy (ELF1 and ELF2), have sequence homology to the floral meristem identity genes LEAFY from Arabidopsis and FLORICAULA from Antirrhinum. ELF1 is expressed in the developing eucalypt floral organs in a pattern similar to LEAFY while ELF2 appears to be a pseudo gene. ELF1 is expressed strongly in the early floral primordium and then successively in the primordia of sepals, petals, stamens and carpels. It is also expressed in the leaf primordia and young leaves and adult and juvenile trees. The ELF1 promoter coupled to a GUS reporter gene directs expression in transgenic Arabidopsis in a temporal and tissue-specific pattern similar to an equivalent Arabidopsis LEAFY promoter construct. Strong expression is seen in young flower buds and then later in sepals and petals. No expression was seen in rosette leaves or roots of flowering plants or in any non-flowering plants grown under long days. Furthermore, ectopic expression of the ELF1 gene in transgenic Arabidopsis causes the premature conversion of shoots into flowers, as does an equivalent 35S-LFY construct. These data suggest that ELF1 plays a similar role to LFY in flower development and that the basic mechanisms involved in flower initiation and development in Eucalyptus are similar to those in Arabidopsis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...