GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-03-05
    Description: The formation of the Central Andes dates back to ∼50 Ma, but its most pronounced episode, including the growth of the Altiplano‐Puna Plateau and pulsatile tectonic shortening phases, occurred within the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the changing geometry of the subducted Nazca plate, and particularly the steepening of the mid‐mantle slab segment which results in a slowing down of the trench retreat and subsequent increase in shortening of the advancing South America plate. This steepening first happens after the end of the flat slab episode at ∼25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance the intensity of the shortening events. These processes include delamination of the mantle lithosphere and weakening of foreland sediments. Our new modeling results are consistent with the timing and amplitude of the deformation from geological data in the Central Andes at the Altiplano latitude.
    Description: Plain Language Summary: The Central Andes is a subduction‐type orogeny that formed as a result of the interaction between the Nazca oceanic plate and the South American continental plate over the last 50 million years. Growth of the Andes is primarily the result of crustal shortening. Nevertheless, “geological” data compiled from previous studies have shown that phases of drastic pulsatile shortening occur at 15 and 5 Ma. In this study, we used high‐resolution 2D numerical geodynamic simulations to investigate the link between oceanic and continental plate dynamics and their interaction. We find that when the oceanic plate steepens in the mantle transition zone, the trench retreat is hindered. Coupled with the weakening of the continental plate through the slab flattening and subsequent delamination of the lithospheric mantle, this leads to pulsatile shortening phases of a magnitude equivalent to that suggested by the data.
    Description: Key Points: The steepening of the slab due to slab buckling hinders the trench retreating and explains the main pulsatile phases of the deformation during the last 25 Ma. The absolute motion of the overriding plate controls the regime of subduction dynamics. Flat slab and eclogitization are required to weaken and then shorten the overriding plate when the slab steepens and the trench is hindered.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: German Federal State of Brandenburg
    Description: ERC Synergy
    Description: North‐German Supercomputing Alliance
    Description: https://doi.org/10.5880/GFZ.2.5.2022.001
    Description: https://github.com/Minerallo/aspect/tree/Paper_slab_buckling_Andes
    Description: https://doi.org/10.5880/GFZ.2.5.2022.001
    Description: https://github.com/fastscape-lem/fastscapelib-fortran
    Keywords: ddc:551.8 ; Central Andes ; subduction dynamics ; geodynamics ; shortening ; steepening ; flat‐slab
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The formation of the Central Andes dates back to ∼50 Ma, but its most pronounced episode, including the growth of the Altiplano-Puna Plateau and pulsatile tectonic shortening phases, occurred within the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the changing geometry of the subducted Nazca plate, and particularly the steepening of the mid-mantle slab segment which results in a slowing down of the trench retreat and subsequent increase in shortening of the advancing South America plate. This steepening first happens after the end of the flat slab episode at ∼25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance the intensity of the shortening events. These processes include delamination of the mantle lithosphere and weakening of foreland sediments. Our new modeling results are consistent with the timing and amplitude of the deformation from geological data in the Central Andes at the Altiplano latitude. Key Points The steepening of the slab due to slab buckling hinders the trench retreating and explains the main pulsatile phases of the deformation during the last 25 Ma The absolute motion of the overriding plate controls the regime of subduction dynamics Flat slab and eclogitization are required to weaken and then shorten the overriding plate when the slab steepens and the trench is hindered
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-25
    Description: William’s Ridge, a ~300-km-long salient extending southeast from the Central Kerguelen Plateau, and Broken Ridge are conjugate divergent margins in the southern Indian Ocean that separated at ~43 Ma. In early 2020, scientists aboard Australia’s Marine National Facility, RV Investigator, acquired multichannel seismic reflection (MCS), sub-bottom profiling, multibeam bathymetry, and gravity data on these margins, as well as dredged rock samples, on a 57-day voyage. The research project constitutes the first-ever case study of conjugate oceanic plateau end-member tectonic plates, with the goal of advancing knowledge of lithospheric rifting, breakup, and initial plate separation processes. The first-ever dedicated multibeam mapping of William’s and Broken ridges encompassed ~52,000 km2 and ~43,000 km2, respectively. Four new RV Investigator MCS profiles (500 line-km) across William’s Ridge complement one legacy RV Rig Seismic and three new RV Sonne MCS profiles; five new RV Investigator MCS profiles (603 line-km) across the conjugate portion of Broken Ridge are the first to be acquired on that feature. Multibeam bathymetry and MCS transects of William’s Ridge show multiple linear ridges and troughs interpreted as horst and graben. In contrast, multibeam bathymetry and MCS transects of Broken Ridge show a prominent E-W scarp (Diamantina Escarpment) with a complex morphology of emanating en echelon crustal blocks and depressions at the base of the scarp. Prominent angular unconformities (middle Eocene hiatus?) characterize the sedimentary section on some ridges, and dipping reflection sequences within interpreted igneous basement suggest subaerial basalt flows. Rock dredges on the facing conjugate margin fault scarps targeted all stratigraphic levels exposing basement rocks. Nine on William’s Ridge yielded both oceanic and (in situ?) continental rocks; eight on Broken Ridge yielded solely oceanic rocks. The new geophysical data and geological samples may justify a new or revised submission to the United Nations Commission on the Limits of the Continental Shelf to extend Australia’s marine jurisdiction on and around William’s Ridge under the United Nations Convention on the Law of the Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-21
    Description: Continental microplates are enigmatic plate boundary features, which can occur in extensional and compressional regimes. Here we focus on microplate formation and their temporal evolution in continental rift settings. To this aim, we employ the geodynamic finite element software ASPECT to conduct 3D lithospheric‐scale numerical models from rift inception to continental breakup. We find that depending on the strike‐perpendicular offset and crustal strength, rift segments connect or interact through one of four regimes: (1) an oblique rift, (2) a transform fault, (3) a rotating continental microplate or (4) a rift jump. We highlight that rotating microplates form at offsets 〉200 km in weak to moderately strong crustal setups. We describe the dynamics of microplate evolution from initial rift propagation, to segment overlap, vertical‐axis rotation, and eventually continental breakup. These models may explain microplate size and kinematics of the Flemish Cap, the Sao Paulo Plateau, and other continental microplates that formed during continental rifting worldwide.
    Description: Plain Language Summary: Microplates are enigmatic features that form in the boundaries between tectonic plates. In continental rifts, plates are successively broken to eventually form new oceans. As the continental crust is very heterogeneous, rifts rarely form in straight lines. In some cases, individual rift segments initiate hundreds of kilometers apart both along and perpendicular to strike and as these segments grow, they interact and link. Here we use 3D computer simulations to investigate the linkage of offset rifts. We find that rift linkage is primarily controlled by the strike‐perpendicular offset and crustal strength. At low offset they link through an oblique rift segment, at medium offset a transform fault is formed, and at large offsets in weak crust they overlap and rotate a central block known as a microplate. We suggest that the latter processes have shaped the Flemish Cap, the Sao Paulo Plateau, and many other continental promontories at rifted margins worldwide.
    Description: Key Points: Strike‐perpendicular offset and crustal strength control the mode of rift segment linkage (microplate, oblique, or transform) Rotating continental microplates form at offsets of 〉200 km for weak and moderately strong crust Modeled microplate evolution may explain the formation of the Flemish Cap, the Sao Paulo Plateau, and other continental promontories
    Description: Helmholtz Young Investigator Group CRYSTALS
    Keywords: 551.136 ; Flemish Cap ; Sao Paulo Plateau ; microplate formation ; numerical modeling
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-29
    Description: Complex, time‐dependent, and asymmetric rift geometries are observed throughout the East African Rift System (EARS) and are well documented, for instance, in the Kenya Rift. To unravel asymmetric rifting processes in this region, we conduct 2D geodynamic models. We use the finite element software ASPECT employing visco‐plastic rheologies, mesh‐refinement, distributed random noise seeding, and a free surface. In contrast to many previous numerical modeling studies that aimed at understanding final rifted margin symmetry, we explicitly focus on initial rifting stages to assess geodynamic controls on strain localization and fault evolution. We thereby link to geological and geophysical observations from the Southern and Central Kenya Rift. Our models suggest a three‐stage early rift evolution that dynamically bridges previously inferred fault‐configuration phases of the eastern EARS branch: (1) accommodation of initial strain localization by a single border fault and flexure of the hanging‐wall crust, (2) faulting in the hanging‐wall and increasing upper‐crustal faulting in the rift‐basin center, and (3) loss of pronounced early stage asymmetry prior to basinward localization of deformation. This evolution may provide a template for understanding early extensional faulting in other branches of the East African Rift and in asymmetric rifts worldwide. By modifying the initial random noise distribution that approximates small‐scale tectonic inheritance, we show that a spectrum of first‐order fault configurations with variable symmetry can be produced in models with an otherwise identical setup. This approach sheds new light on along‐strike rift variability controls in active asymmetric rifts and proximal rifted margins.
    Description: Key Points: 2D numerical models elucidate evolution of asymmetric Kenya Rift segments. Intrabasinal faulting is caused by bending of the central block and does not reach the brittle‐ductile transition. Small‐scale crustal inheritance can exert decisive control on first‐order rift architecture.
    Description: Helmholtz Young Ivestigators Group
    Description: National Science Foundation
    Keywords: 551.8 ; 556 ; asymmetric rifting ; rift variability ; numerical model ; structural inheritance ; Kenya Rift
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-26
    Description: Continental rifting is responsible for the generation of major sedimentary basins, both during rift inception and during the formation of rifted continental margins. Geophysical and field studies revealed that rifts feature complex networks of normal faults but the factors controlling fault network properties and their evolution are still matter of debate. Here, we employ high‐resolution 2D geodynamic models (ASPECT) including two‐way coupling to a surface processes (SP) code (FastScape) to conduct 12 models of major rift types that are exposed to various degrees of erosion and sedimentation. We further present a novel quantitative fault analysis toolbox (Fatbox), which allows us to isolate fault growth patterns, the number of faults, and their length and displacement throughout rift history. Our analysis reveals that rift fault networks may evolve through five major phases: (a) distributed deformation and coalescence, (b) fault system growth, (c) fault system decline and basinward localization, (d) rift migration, and (e) breakup. These phases can be correlated to distinct rifted margin domains. Models of asymmetric rifting suggest rift migration is facilitated through both ductile and brittle deformation within a weak exhumation channel that rotates subhorizontally and remains active at low angles. In sedimentation‐starved settings, this channel satisfies the conditions for serpentinization. We find that SP are not only able to enhance strain localization and to increase fault longevity but that they also reduce the total length of the fault system, prolong rift phases and delay continental breakup.
    Description: Plain Language Summary: Continental rifting is responsible for breaking apart continents and forming new oceans. Rifts generally evolve according to three types: wide rift, symmetric rift, and asymmetric rifts, which also shape the final geometry of the continental rifted margin. Geophysical data shows that the evolution of rifts depends on a multitude of factors including the complex interactions between fault networks that accommodate extension and the processes of erosion and sediment deposition. Here we run 2D computer simulations to investigate fault network evolution during active rifting that include changes to the surface through erosion and sedimentation. By using a new python tool box, we extract the fault network from the simulation and determine individual fault properties like the number of faults, displacement, age, and length through time. We find that regardless of the rift type, rifts evolve according to five phases that can be assessed through the evolution of the fault network properties. Additionally, we find that greater erosion and sedimentation can prolong rift phases and delay the breakup of continents.
    Description: Key Points: We apply a new fault analysis toolbox to coupled numerical models of tectonics and surface processes. Fault network evolution of the major symmetric, asymmetric, narrow, and wide rift types can be described in five distinct phases. Surface processes reduce fault network complexity and delay breakup by enhancing strain localization and increasing fault longevity.
    Description: Helmholtz Young Investigators
    Description: National Science Foundation
    Description: Deutsche Forschungsgemeinschaft (DFG)
    Description: https://doi.org/10.5281/zenodo.5753144
    Keywords: ddc:551.8
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...