GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    facet.materialart.
    Unknown
    University of South Florida Libraries
    In:  EPIC3International Journal of Speleology, University of South Florida Libraries, 53(1), pp. 13-23, ISSN: 0392-6672
    Publication Date: 2024-03-01
    Description: The study of modern cave deposits forming under near isotopic equilibrium conditions can potentially help disentangle the processes influencing the oxygen isotope system and suitability of stalagmites as archives of past hydrological or thermal changes. We used cave monitoring to evaluate the impact of kinetic isotope fractionation and assess the conditions under which modern cave carbonates form in the Caumont cave and quarry system, located in Normandy, northwest France. Over 20 months, we collected climatological data, dripwater, and modern carbonate samples at 2–4-week intervals at three different stations inside the Caumont cave and quarry system. We find highly stable (10.4 ± 0.3 – 11.3 ± 0.1°C) temperature in the deeper sections of the Caumont cave and quarry system. The temporal dynamics of δ18 Odrip indicates that the drip water composition in Caumont reflects the original (though subdued) signal of precipitation, rather than the impact the seasonal to interannual cave air temperature has on isotopic fractionation. The monitoring reveals that δ13 C of modern carbonate is influenced by prior carbonate precipitation that occurs during the summer season when evapotranspiration can minimize effective infiltration. Comparison of δ18 O from dripwater and modern calcite, precipitated on glass plates and collected every two to four weeks, reveals that modern calcite forms near oxygen isotope equilibrium. A Hendy test on modern carbonate deposited on a stalagmite-shaped glass flask over 20 months confirms this finding because neither does δ13 C increase with distance from the apex, nor are δ13 C and δ18 O positively correlated. We conclude that the δ13 C signal in speleothems reflect summer (and longer-term) prior carbonate precipitation in response to effective infiltration dynamics, and that the δ18 O signal likely reflects annual to multi-annual changes in the composition of precipitation above the cave.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-31
    Description: The role of seasonality is indisputable in climate and ecosystem dynamics. Seasonal temperature and precipitation variability are of vital importance for the availability of food, water, shelter, migration routes, and raw materials. Thus, understanding past climatic and environmental changes at seasonal scale is equally important for unearthing the history and for predicting the future of human societies under global warming scenarios. Alas, in palaeoenvironmental research, the term �seasonality change� is often used liberally without scrutiny or explanation as to which seasonal parameter has changed and how. Here we provide fundamentals of climate seasonality and break it down into external (insolation changes) and internal (atmospheric CO2 concentration) forcing, and regional and local and modulating factors (continentality, altitude, large-scale atmospheric circulation patterns). Further, we present a brief overview of the archives with potentially annual/seasonal resolution (historical and instrumental records, marine invertebrate growth increments, stalagmites, tree rings, lake sediments, permafrost, cave ice, and ice cores) and discuss archive-specific challenges and opportunities, and how these limit or foster the use of specific archives in archaeological research. Next, we address the need for adequate data-quality checks, involving both archive-specific nature (e.g., limited sampling resolution or seasonal sampling bias) and analytical uncertainties. To this end, we present a broad spectrum of carefully selected statistical methods which can be applied to analyze annually- and seasonally-resolved time series. We close the manuscript by proposing a framework for transparent communication of seasonality-related research across different communities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...