GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 7797-7797 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 3376-3380 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The shear viscosity of a fully-flexible model for n-decane is calculated via equilibrium molecular dynamics simulations at the state point T=480 K and ρ=0.6136 g/cm3. A reversible multiple-time step approach is used in conjunction with Nosé–Hoover chain dynamics to generate data in the canonical (NVT) ensemble. For comparison the shear viscosity is also computed in the standard microcanonical NVE ensemble. A model that accurately reproduces the experimental vapor–liquid coexistence curve is shown to yield excellent results for the shear viscosity at the state point under study. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 103 (1995), S. 10192-10200 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In a recent article [J. Chem. Phys. 102, 3376 (1995)] molecular dynamics (MD) was used to calculate the shear viscosity of liquid n-decane using an intermolecular potential that reproduces the liquid–vapor coexistence as well as the critical temperature. Semi-quantitative agreement with experiment was obtained. To further test the model, n-decane is examined under shear using reversible nonequilibrium molecular dynamics (NEMD) in both the isothermal–isobaric (NPT) and the canonical (NVT) ensembles. The algorithm proposed herein, for studying a molecular system, is an atomic version of the so-called SLLOD algorithm originally introduced by Edberg, Evans, and Morriss [J. Chem. Phys. 84, 6933 (1986)]. Results obtained by Daivis and Evans [J. Chem. Phys. 100, 541 (1994)] indicating the disappearance of a high shear-rate (γ) thickening regime when the simulations are performed in the NPT ensemble are corroborated. The "plateau'' region, where the viscosity is essentially independent of shear-rate, γ is examined in detail in order to interpolate back to the Green–Kubo value. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 3211-3214 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A nonequilibrium molecular dynamics algorithm is employed to study a fluid confined between two immobile walls. The linear response theory of Bocquet and Barrat [Phys. Rev. E 49, 3079 (1994)] is used to relate phenomenological parameters, which determine the boundary conditions of the interface, to averages over microscopic quantities that can be obtained directly from the simulation. The parameters, which characterize "stick'' or "slip'' behavior and the thickness of the immobile fluid layer at the boundaries, have been determined for a model system: namely, a soft-sphere fluid interacting with corrugated walls. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 5615-5621 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The nonequilibrium molecular dynamics generated by the SLLOD algorithm [so called due to its association with the DOLLS tensor algorithm (D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic, New York, 1990)] for fluid flow is considered. It is shown that, in the absence of time-dependent boundary conditions (e.g., shearing boundary conditions via explicit cell dynamics or Lees–Edwards boundary conditions), a conserved energy, H exists for the equations of motion. The phase space distribution generated by SLLOD dynamics can be explicitly derived from H. In the case of a fluid confined between two immobile boundaries undergoing planar Couette flow, the phase space distribution predicts a linear velocity profile, a fact which suggests the flow is field driven rather than boundary driven. For a general flow in the absence of time-dependent boundaries, it is shown that the SLLOD equations are no longer canonical in the laboratory momenta, and a modified form of the SLLOD dynamics is presented which is valid arbitrarily far from equilibrium for boundary conditions appropriate to the flow. From an analysis of the conserved energy for the new SLLOD equations in the absence of time-dependent boundary conditions, it is shown that the correct local thermodynamics is obtained. In addition, the idea of coupling each degree of freedom in the system to a Nosé–Hoover chain thermostat is presented as a means of efficiently generating the phase space distribution. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 11190-11195 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The shear viscosity of water at 303.15 K is calculated for the extended simple point charge (SPC/E) model of Berendsen et al. [J. Phys. Chem. 91, 6269 (1987)] using both equilibrium and nonequilibrium molecular dynamics (NEMD) methods. Reciprocal space sums to handle long-range electrostatic forces in a noncubic simulation box under shear are used in conjunction with box dynamics to evaluate the Coulombic interactions. At the state point studied, the shear viscosity of SPC/E water is found to be 6.6±0.8×10−4 Pa s, which is about 18% less than the experimental value. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 11183-11189 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have devised a reversible set of nonequilibrium molecular dynamics equations of motion to study viscous flow under an applied shear field utilizing a new profile unbiased thermostat (PUT). Based on a modification of the original equations presented by Evans and Morriss [Phys. Rev. Lett. 56, 2172 (1986)], we have extended the phase space to include dynamically evolving streaming velocities. The new method is advantageous because it allows control of the rate at which the streaming velocities evolve and thereby removes the effects of high frequency thermal fluctuations. Further, in tests on a Weeks–Chandler–Andersen fluid, we find that a shear-induced microstructure, the so-called "string phase,'' was not destabilized by the new PUT scheme. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-05-25
    Description: The Marginal Ice Zone (MIZ) of the Arctic Ocean is changing rapidly due to a warming Arctic climate with commensurate reductions in sea ice extent and thickness. This Pan-Arctic review summarizes the main changes in the Arctic ocean–sea ice–atmosphere (OSA) interface, with implications for primary- and secondary producers in the ice and the underlying water column. Changes in the Arctic MIZ were interpreted for the period 1979–2010, based on best-fit regressions for each month. Trends of increasingly open water were statistically significant for each month, with quadratic fit for August–November, illustrating particularly strong seasonal feedbacks in sea-ice formation and decay. Geographic interpretations of physical and biological changes were based on comparison of regions with significant changes in sea ice: (1) The Pacific Sector of the Arctic Ocean including the Canada Basin and the Beaufort, Chukchi and East Siberian seas; (2) The Canadian Arctic Archipelago; (3) Baffin Bay and Hudson Bay; and (4) the Barents and Kara seas. Changes in ice conditions in the Barents sea/Kara sea region appear to be primarily forced by ocean heat fluxes during winter, whereas changes in the other sectors appear to be more summer–autumn related and primarily atmospherically forced. Effects of seasonal and regional changes in OSA-system with regard to increased open water were summarized for photosynthetically available radiation, nutrient delivery to the euphotic zone, primary production of ice algae and phytoplankton, ice-associated fauna and zooplankton, and gas exchange of CO2. Changes in the physical factors varied amongst regions, and showed direct effects on organisms linked to sea ice. Zooplankton species appear to be more flexible and likely able to adapt to variability in the onset of primary production. The major changes identified for the ice-associated ecosystem are with regard to production timing and abundance or biomass of ice flora and fauna, which are related to regional changes in sea-ice conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-24
    Description: The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 3542-3566, doi:10.1002/2014JC010620.
    Description: We present the results of a 6 week time series of carbonate system and stable isotope measurements investigating the effects of sea ice on air-sea CO2 exchange during the early melt period in the Canadian Arctic Archipelago. Our observations revealed significant changes in sea ice and sackhole brine carbonate system parameters that were associated with increasing temperatures and the buildup of chlorophyll a in bottom ice. The warming sea-ice column could be separated into distinct geochemical zones where biotic and abiotic processes exerted different influences on inorganic carbon and pCO2 distributions. In the bottom ice, biological carbon uptake maintained undersaturated pCO2 conditions throughout the time series, while pCO2 was supersaturated in the upper ice. Low CO2 permeability of the sea ice matrix and snow cover effectively impeded CO2 efflux to the atmosphere, despite a strong pCO2 gradient. Throughout the middle of the ice column, brine pCO2 decreased significantly with time and was tightly controlled by solubility, as sea ice temperature and in situ melt dilution increased. Once the influence of melt dilution was accounted for, both CaCO3 dissolution and seawater mixing were found to contribute alkalinity and dissolved inorganic carbon to brines, with the CaCO3 contribution driving brine pCO2 to values lower than predicted from melt-water dilution alone. This field study reveals a dynamic carbon system within the rapidly warming sea ice, prior to snow melt. We suggest that the early spring period drives the ice column toward pCO2 undersaturation, contributing to a weak atmospheric CO2 sink as the melt period advances.
    Description: We acknowledge support from the Polar Continental Shelf Program (PCSP) of Natural Resources Canada, the Natural Sciences and Engineering Research Council of Canada, the Northern Scientific Training Program, Canada Economic Development, and Fisheries and Oceans Canada.
    Description: 2015-11-19
    Keywords: Sea ice ; Carbon cycling ; CO2 ; Brines ; Stable isotopes ; Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...