GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-16
    Description: Accurate tracking and forecasting of ash dispersal in the atmosphere and quantification of its uncertainty are of fundamental importance for volcanic risk mitigation. Numerical models and satellite sensors offer two complementary ways to monitor ash clouds in real time, but limits and uncertainties affect both techniques. Numerical forecasts of volcanic clouds can be improved by assimilating satellite observations of atmospheric ash mass load. In this paper, we present a data assimilation procedure aimed at improving the monitoring and forecasting of volcanic ash clouds produced by explosive eruptions. In particular, we applied the Local Ensemble Transform Kalman Filter (LETKF) to the results of the Volcanic Ash Transport and Dispersion model HYSPLIT. To properly simulate the release and atmospheric transport of volcanic ash particles, HYSPLIT has been initialized with the results of the eruptive column model PLUME-MoM. The assimilation procedure has been tested against SEVIRI measurements of the volcanic cloud produced during the explosive eruption occurred at Mt. Etna on 24 December 2018. The results show how the assimilation procedure significantly improves the representation of the current ash dispersal and its forecast. In addition, the numerical tests show that the use of the sequential Ensemble Kalman Filter does not require a precise initialization of the numerical model, being able to improve the forecasts as the assimilation cycles are performed.
    Description: Published
    Description: id 359
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: data assimilatio ; volcanic eruption ; tephra dispersal ; numerical modeling ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-18
    Description: Recent explosive volcanic eruptions recorded worldwide (e.g. Hekla in 2000, Eyjafjallajökull in 2010, Cordón-15 Caulle in 2011) demonstrated the necessity of a better assessment of the Eruption Source Parameters (ESP; e.g. column height, mass eruption rate, eruption duration, and Total Grain-Size Distribution – TGSD) to reduce the uncertainties associated with the far-travelling airborne ash mass. Volcanological studies started to integrate observations to use more realistic numerical inputs, crucial for taking robust volcanic risk mitigation actions. On 23rd November 2013, Etna volcano (Italy) erupted producing a 10-km height plume, from which two volcanic clouds were observed at different altitudes from 20 satellite (SEVIRI, MODIS). One was retrieved as mainly composed by very fine ash (i.e. PM20), whereas the second one as made of ice/SO2 droplets (i.e. not measurable in terms of ash mass). Atypical north-easterly wind direction transported the tephra from Etna towards the Calabria and Puglia regions (southern Italy), permitting tephra sampling in proximal (i.e. ~5-25 km from source), and medial areas (i.e. Calabria region, ~160km). A primary TGSD was derived from the field measurement analysis, but the paucity of data (especially related to the fine ash fraction) prevented it from being entirely representative of 25 the initial magma fragmentation. For better constraining the TGSD assessment, we also estimated the distribution from the X-band weather radar data. We integrated the field and radar-derived TGSDs by inverting the relative weighting averages to best-fit the tephra loading measurements. The resulting TGSD is used as input for the FALL3D tephra dispersal model to reconstruct the whole tephra loading. Furthermore, we empirically modified the integrated TGSD by enriching the PM20 classes until the numerical results were able to reproduce the airborne ash mass retrieved from satellite data. The resulting 30 TGSD is inverted best-fitting the field, ground-based, and satellite-based measurements. The results indicate a total erupted mass of 1.2 × 10^9 kg, being similar to the field-derived value of 1.3 × 10^9 kg, and an initial PM20 fraction between 3.6 and 9.0 wt%, constituting the tail of the TGSD.
    Description: Published
    Description: 4695-4714
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-07
    Description: On the morning of 24 December 2018, an eruptive event occurred at Etna, which was followed the next day by a strong sequence of shallow earthquakes. The eruptive episode lasted until 30 December, ranging from moderate strombolian to lava fountain activity coupled with vigorous ash/gas emissions and a lava flow e usion toward the eastern volcano flank of Valle del Bove. In this work, the data collected from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments on board the Meteosat Second Generation (MSG) geostationary satellite are used to characterize the Etna activity by estimating the proximal and distal eruption parameters in near real time. The inversion of data indicates the onset of eruption on 24 December at 11:15 UTC, a maximum Time Average Discharge Rate (TADR) of 8.3 m3/s, a cumulative lava volume emitted of 0.5 Mm3, and a Volcanic Plume Top Height (VPTH) that reached a maximum altitude of 8 km above sea level (asl). The volcanic cloud ash and SO2 result totally collocated, with an ash amount generally lower than SO2 except on 24 December during the climax phase. A total amount of about 100 and 35 kt of SO2 and ash respectively was emitted during the entire eruptive period, while the SO2 fluxes reached peaks of more than 600 kg/s, with a mean value of about 185 kg/s. The SEVIRI VPTH, ash/SO2 masses, and flux time series have been compared with the results obtained from the ground-based visible (VIS) cameras and FLux Automatic MEasurements (FLAME) networks, and the satellite images collected by the MODerate resolution Imaging Spectroradiometer (MODIS) instruments on board the Terra and Aqua- polar satellites. The analysis indicates good agreement between SEVIRI, VIS camera, and MODIS retrievals with VPTH, ash, and SO2 estimations all within measurement errors. The SEVIRI and FLAME SO2 flux retrievals show significant discrepancies due to the presence of volcanic ash and a gap of data on the FLAME network. The results obtained in this study show the ability of geostationary satellite systems to characterize eruptive events from the source to the atmosphere in near real time during the day and night, thus o ering a powerful tool to mitigate volcanic risk on both local population and airspace and to give insight on volcanic processes.
    Description: Published
    Description: 1336
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-19
    Description: Syneruptive gas flux time series can, in principle, be retrieved from satellite maps of SO2 collected during and immediately after volcanic eruptions, and used to gain insights into the volcanic processes which drive the volcanic activity. Determination of the age and height of volcanic plumes are key prerequisites for such calculations. However, these parameters are challenging to constrain using satellite-based techniques. Here, we use imagery from OMI and GOME-2 satellite sensors and a novel numerical procedure based on back-trajectory analysis to calculate plume height as a function of position at the satellite measurement time together with plume injection height and time at a volcanic vent location. We applied this new procedure to three Etna eruptions (12 August 2011, 18 March 2012 and 12 April 2013) and compared our results with independent satellite and ground-based estimations. We also compare our injection height time-series with measurements of volcanic tremor, which reflects the eruption intensity, showing a good match between these two datasets. Our results are a milestone in progressing towards reliable determination of gas flux data from satellite-derived SO2 maps during volcanic eruptions, which would be of great value for operational management of explosive eruptions.
    Description: 1) European Research Council under the European Union's Seventh Framework Programme (FP/2.007-2013)/ERC Grant Agreement no. 279802, project 283 CO2Volc. 2) MEDiterranean SUpersite Volcanoes 280 (MED-SUV) WP 3.3.3
    Description: Published
    Description: 79-91
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Volcanic SO2 ; Trajectory modelling ; Remote sensing ; Volcanic tremor ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-29
    Description: In this work neural networks (NNs) have been used for the retrieval of volcanic ash and sulfur dioxide (SO2) parameters based on Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral measurements. Different neural networks were built in order for each parameter to be retrieved, for experimenting with different topologies and evaluating their performances. The neural networks' capabilities to process a large amount of new data in a very fast way have been exploited to propose a novel applicative scheme aimed at providing a complete characterization of eruptive products. As a test case, the May 2010 Eyjafjallajókull eruption has been considered. A set of seven MODIS images have been used for the training and validation phases. In order to estimate the parameters associated to the volcanic eruption, such as ash mass, effective radius, aerosol optical depth and SO2 columnar abundance, the neural networks have been trained using the retrievals from well-known algorithms. These are based on simulated radiances at the top of the atmosphere and are estimated by radiative transfer models. Three neural network topologies with a different number of inputs have been compared: (a) three thermal infrared MODIS channels, (b) all multispectral MODIS channels and (c) the channels selected by a pruning procedure applied to all MODIS channels. Results show that the neural network approach is able to estimate the volcanic eruption parameters very well, showing a root mean square error (RMSE) below the target data standard deviation (SD). The network built considering all the MODIS channels gives a better performance in terms of specialization, mainly on images close in time to the training ones, while the networks with less inputs reveal a better generalization performance when applied to independent data sets. In order to increase the network's generalization capability and to select the most significant MODIS channels, a pruning algorithm has been implemented. The pruning outcomes revealed that channel sensitive to ash parameters correspond to the thermal infrared, visible and mid-infrared spectral ranges. The neural network approach has been proven to be effective when addressing the inversion problem for the estimation of volcanic ash and SO2 cloud parameters, providing fast and reliable retrievals, important requirements during volcanic crises.
    Description: Published
    Description: 4023–4047
    Description: 2SR. VULCANI - Servizi e ricerca per la Società
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-24
    Description: The frequent number of explosive events at Mt. Etna, in Italy, over the last ten years, has made necessary the improvement of volcanic ash monitoring and forecasting system at the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (INGV-OE). Tephra fallout produced during Etna lava fountains largely impact the population living on the volcano flanks. In addition, during one of the most powerful paroxysms, large clasts fell in proximal areas injured tourists and hikers. To reduce risk, the Italian Department Civil Protection (DPC) asked and funded INGV-OE to do a research project finalized to three specific objectives. First, identify the plume scenario (i.e. weak plume scenario (WPS) and strong plume scenarios (SPS)) based on 1-D plume model. Second, forecast characteristics of tephra deposition using near real time observations. Third, identify the region possibly impacted by large clasts (〉5 cm). Two algorithms were developed to measure the column height. One from the calibrated images of two visible cameras installed on the S and W flanks of the volcano, respectively; and the other one from satellite data using a procedure based on the computation of the volcanic plume-top brightness temperature at 10.8 mm. The analysis of lava fountains that occurred between 2011 and 2015 provided the opportunity to differentiate between weak, transitional and strong plumes. The uncertainty associated with eruption source parameters, while maintaining a fixed plume height, was also assessed. In the near future the implementation of these products into the INGV-OE - monitoring room will guarantee a better and timely information to civil protection authorities charged of risk prevention at different levels of responsibility.
    Description: Published
    Description: Napoli
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: Etna ; tephra ; fallout ; explosive ; eruptions ; impact
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-03-27
    Description: Volcanic eruptions emit large quantities of gas and solid particles into the atmosphere, with significant impact on environment, climate, human health and air traffic. The EVER-EST project (European Virtual Environment for Research - Earth Science Themes: a solution) is a H2020 project (2015-2018) having as focus the creation of a Virtual Research Environment (VRE) to enhance the ability to interoperate and share knowledge in Earth Science community. Using the VRE, the scientists should be able to collaborate with colleagues located in different parts of the world, to remotely access and share data and research results, to carry out training sessions and discussions, to compare different results and models. Through the VRE, using the Rohub concept (www.rohub.org.), the researchers will have the opportunity to reuse data and, above all, algorithms developed by others scientists. The VPR (Volcanic Plume Removal) procedure, for the retrieval of volcanic ash, ice and SO2 cloud parameters has been implemented into VRE, for the processing of the MODIS sensor data on board the polar NASA Aqua/Terra satellite platforms. In this work the VPR procedure, implemented into the VRE platform, is considered to process all the MODIS images collected during one of the biggest lava fountains occurred at Etna volcano after 2011, the 03 - 09 December 2015 eruption.
    Description: Published
    Description: Vienna, Austria
    Description: 5V. Processi eruttivi e post-eruttivi
    Keywords: Virtual Research Environment ; VRE ; EVER-EST ; Rohub ; Research Obiect ; Volcanic Plume Removal ; volcanic ash ; MODIS ; NASA Aqua/Terra satellite ; Etna ; volcano ; eruption
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-03-27
    Description: A-train satellite data, acquired during the Calbuco volcano (Chile) sub-Plinian eruption in April 2015, are discussed to explore the complementarity of spaceborne observations in the microwave (MW), thermal infrared (TIR), and visible wavelengths for both near-source plume and distal ash clouds. The analysis shows that TIR-based detection techniques are not suitable near the volcanic vent where rising convective columns are associated with large optical depths. Detection and parametric estimates of near-source tephra mass loading and plume height from MW radiometric data, available 69 min after the eruption onset, are proposed. Results indicate a maximum plume altitude of about 21 km above the sea level and an ash mass of 3.65 × 10^10 kg, in agreement with mass values obtained from empirical formulas, but less than proximal– distal mass deposit of 1.86 × 10^11 kg. This discrepancy may be explained by extrapolating Advanced Technology Microwave Sounder-based estimates to 6 h, thus obtaining a total mass of about 1.90×10^11 kg. Distal volcanic cloud retrievals are derived from TIR imagery and results show a good agreement between Moderate-Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) retrievals of total mass taking into account the overpass time shift. If only the overlapping pixels between MODIS and VIIRS are considered, the respective estimates are 1.90 × 10^9 kg and 1.80 × 10^9 kg. TIR radiometric estimates of distal ash cloud height and mass loadings are also compared with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar retrievals. For low-to-medium optically thick ash cloud, average Cloud-Aerosol Lidar with Orthogonal Polarization-derived mass loading is about 0.8 g/m2 against 0.4 g/m2 from VIIRS and 1.4 g/m2 from MODIS.
    Description: Published
    Description: 2597 - 2612
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-03-26
    Description: From 2011 to 2015, 49 lava fountains occurred at Etna volcano. In this work, the measurements carried out from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument, on board the Meteosat Second Generation (MSG) geostationary satellite, are processed to realize a proximal monitoring of the eruptive activity for each event. The SEVIRI measurements are managed to provide the time series of start and duration of eruption and fountains, Time Averaged Discharge Rate (TADR) and Volcanic Plume Top Height (VPTH). Due to its temperature responsivity, the eruptions start and duration, fountains start and duration and TADR are realized by exploiting the SEVIRI 3.9 m channel, while the VPTH is carried out by applying a simplified procedure based on the SEVIRI 10.8 m brightness temperature computation. For each event, the start, duration and TADR have been compared with ground-based observations. The VPTH time series is compared with the results obtained from a procedures-based on the volcanic cloud center of mass tracking in combination with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back-trajectories. The results indicate that SEVIRI is generally able to detect the start of the lava emission few hours before the ground measurements. A good agreement is found for both the start and the duration of the fountains and the VPTH with mean differences of about 1 h, 50 min and 1 km respectively.
    Description: Published
    Description: id 140
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-09
    Description: The EVER-EST project (European Virtual Environment for Research - Earth Science Themes: a solution) is a H2020 project (2015-2018) aimed at the creation of a Virtual Research Environment (VRE) focused on the requirements of the Earth Science community. The VRE is intended to enhance the ability to collaborate, interoperate and share knowledge and experience between all relevant stakeholders, including researchers, monitoring teams and civil protection agencies. Among the innovations of the project is the exploitation of the “Research Object” concept.
    Description: Published
    Description: VIenna,Austria
    Description: 1VV. Altro
    Keywords: Virtual Research Environment ; VRE ; Research Object ; Geohazard Supersites ; Volcanoes ; 05.02. Data dissemination ; 04.08. Volcanology ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...