GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Godae Project Office, Bureau of Meteorology
    In:  In: Observing the Oceans in the 21st Century. , ed. by Koblinsky, C. J. and Smith, N. R. Godae Project Office, Bureau of Meteorology, Melbourne, Australia, pp. 391-418. ISBN 0642 70618 2
    Publication Date: 2013-01-22
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-02-27
    Description: The ocean stores and transports vast quantities of heat, fresh water, carbon and other materials, and its circulation plays an important role in determining both the Earth's climate and fundamental processes in the biosphere. Understanding the development of climate and important biological cycles therefore requires detailed knowledge of ocean circulation and its transport properties. This cannot be achieved solely through modelling, but must involve accurate observations of the spatio-temporal evolution of the global oceanic flow field. Estimates of oceanic flow are currently made on the basis of space-borne measurements of the sea surface, and monitoring of the ocean interior. Satellite altimetry and acoustic tomography are complementary for this purpose1, as the former provides detailed horizontal coverage of the surface, and the latter the requisite vertical sampling of the interior. High-quality acoustic-tomographic2 and altimetric3 data are now available to test the combined power of these technologies for estimating oceanic flows. Here we demonstrate that, with the aid of state-of-the-art numerical models, it is possible to recover from these data a detailed spatio-temporal record of flow over basin-scale volumes of fluid. Our present results are restricted to the Mediterranean Sea, but the method described here provides a powerful tool for studying oceanic circulation worldwide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-30
    Description: Chevallier showed a column CO 2 ( XCO2 ) anomaly of ±0.5 parts per million forced by a uniform net biosphere exchange (NBE) anomaly of 2.5 gigatonnes of carbon over the tropical continents within a year, so he claimed that the inferred NBE uncertainties should be larger than presented in Liu et al . We show that a much concentrated NBE anomaly led to much larger XCO2 perturbations.
    Keywords: Atmospheric Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-13
    Description: The 2015–2016 El Niño led to historically high temperatures and low precipitation over the tropics, while the growth rate of atmospheric carbon dioxide (CO 2 ) was the largest on record. Here we quantify the response of tropical net biosphere exchange, gross primary production, biomass burning, and respiration to these climate anomalies by assimilating column CO 2 , solar-induced chlorophyll fluorescence, and carbon monoxide observations from multiple satellites. Relative to the 2011 La Niña, the pantropical biosphere released 2.5 ± 0.34 gigatons more carbon into the atmosphere in 2015, consisting of approximately even contributions from three tropical continents but dominated by diverse carbon exchange processes. The heterogeneity of the carbon-exchange processes indicated here challenges previous studies that suggested that a single dominant process determines carbon cycle interannual variability.
    Keywords: Geochemistry, Geophysics, Online Only
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-04-18
    Description: The Southern Ocean plays a fundamental role in the global carbon cycle. Physical and biogeochemical processes, including primary production and the upwelling of carbon-rich water masses, govern carbon exchange between the atmosphere and ocean carbon reservoirs. To study this region, we configured a regional East-Antarctic simulation derived from ECCO-Darwin, a global-ocean biogeochemistry model that assimilates both physical and biogeochemical observations. Our regional ocean model extends from the Antarctic Continent to 60°S and from 100°E to 150°E with horizontal grid spacing of 3–4 km. The model domain includes the Shackleton, Conger, Totten, Moscow University, Holmes, Dibble, and Mertz ice shelves. Since the biogeochemical component of ECCO-Darwin is optimized to best fit global observations, model-data agreement for the East Antarctic region requires further adjustments. For example, (1) simulated upper-100 m nutrient fields are biased high and typical Circumpolar-Deep-Water characteristics with nutrient-rich waters are not clearly simulated and (2) plankton types in the ECCO-Darwin do not include Phaeocystis, an abundant type that plays a key role in the Southern Ocean climate system. In this study, we adjust a small number of physical and biogeochemical model parameters and lateral boundary conditions to achieve improved model-data agreement. We define the cost function as a sum of weighted model-data differences based on both novel in-situ observations and further optimize our simulation using a Green's Functions approach. This work demonstrates downscaling methods for developing regional cutouts from the global-ocean ECCO-Darwin model, which allows for high-resolution coastal studies that include optimized sea ice, ocean physics, and biogeochemistry.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-08-02
    Description: The system of oceanic flows constituting the Atlantic Meridional Overturning Circulation (AMOC) moves heat and other properties to the subpolar North Atlantic, controlling regional climate, weather, sea levels, and ecosystems. Climate models suggest a potential AMOC slowdown towards the end of the 21〈sup〉st〈/sup〉 century due to anthropogenic forcing, which would accelerate coastal sea level rise along the western boundary and dramatically increase coastal flood risk. While the slowdown has not been observed to date, we show here that the AMOC-induced intrinsic changes in gyre-scale heat content, superimposed on the global mean sea level rise, are already influencing the frequency of floods along the United States southeastern seaboard. For the South Atlantic Bight and Gulf of Mexico coasts, using observations and an ocean state estimate, we have established a strong link between coastal sea level, the associated flood frequency, and gyre-scale dynamic sea level and oceanic heat content variability, which are largely controlled by AMOC-driven ocean heat convergence. We find that ocean heat convergence, being the primary driver for interannual sea level changes in the subtropical North Atlantic, has led to an exceptional gyre-scale warming and associated dynamic sea level rise since 2010, accounting for 30-50% of flood days in 2015-2020. The results of this study highlight the importance of accounting for natural, large-scale sea level variability in order to improve coastal sea level projections and to better assess coastal flood risk.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-16
    Description: Analyzing ocean variability, understanding its importance for the climate system, and quantifying its socio-economic impacts are among the primary motivations for obtaining ongoing global ocean observations. There are several possible approaches to address these tasks. One with much potential for future ocean information services and for climate predictions is called ocean synthesis, and is concerned with merging all available ocean observations with the dynamics embedded in an ocean circulation model to obtain estimates of the changing ocean that are more accurate than either system alone can provide. The field of ocean synthesis has matured over the last decade. Several global ocean syntheses exist today and can be used to investigate key scientific questions, such as changes in sea level, heat content, or transports. This CWP summarizes climate variability as “seen” by several ocean syntheses, describes similarities and differences in these solutions and uses results to highlight developments necessary over the next decade to improve ocean products and services. It appears that multi-model ensemble approaches can be useful to obtain better estimates of the ocean. To make full use of such a system, though, one needs detailed error information not only about data and models, but also about the estimated states. Results show that estimates tend to cluster around methodologies and therefore are not necessarily independent from each other. Results also reveal the impact of a historically under-sampled ocean on estimates of inter-decadal variability in the ocean. To improve future estimates, we need not only to sustain the existing observing system but to extend it to include full-depth ARGO-type measurements, enhanced information about boundary currents and transports through key regions, and to keep all important satellite sensors flying indefinitely, including altimetry, gravimetry and ice thickness, microwave SST observations, wind stress measurements and ocean color. We also need to maintain ocean state estimation as an integral part of the ocean observing and information system.
    Description: Published
    Description: Venice, Italy
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: ocean modelling ; Global climate models ; reanalysis ; coupled models ; ensemble ocean syntheses ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-16
    Description: Spurred by the sustained operation and new development of satellite and in-situ observing systems, global ocean state estimation efforts that gear towards climate applications have flourished in the past decade. A hierarchy of estimation methods is being used to routinely synthesize various observations with global ocean models. Many of the estimation products are available through public data servers. There have been an increasingly large number of applications of these products for a wide range of research topics in physical oceanography as well as other disciplines. These studies often provide important feedback for observing systems design. This white paper describes the approaches used by these estimation systems in synthesizing observations and model dynamics, highlights the applications of their products for climate research, and addresses the challenges ahead in relation to the observing systems. Additional applications to study climate variability using an ensemble of state estimation products are described also by a white paper by Stammer et al.
    Description: Published
    Description: Venice, Italy
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: ocean modelling ; Global climate models ; reanalysis ; coupled models ; observing systems ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...