GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth and Planetary Science Letters 400 (2014): 145-152, doi:10.1016/j.epsl.2014.05.034.
    Description: About a quarter of all meteorites falling on Earth today originate from the breakup of the L-chondrite parent body ∼470 Ma∼470 Ma ago, the largest documented breakup in the asteroid belt in the past ∼3 Ga∼3 Ga. A window into the flux of meteorites to Earth shortly after this event comes from the recovery of about 100 fossil L chondrites (1–21 cm in diameter) in a quarry of mid-Ordovician limestone in southern Sweden. Here we report on the first non-L-chondritic meteorite from the quarry, an 8 cm large winonaite-related meteorite of a type not known among present-day meteorite falls and finds. The noble gas data for relict spinels recovered from the meteorite show that it may be a remnant of the body that hit and broke up the L-chondrite parent body, creating one of the major asteroid families in the asteroid belt. After two decades of systematic recovery of fossil meteorites and relict extraterrestrial spinel grains from marine limestone, it appears that the meteorite flux to Earth in the mid-Ordovician was very different from that of today.
    Description: This study was supported by an European Research Council Advanced Grant to B.S., in part by NASA grant NNX08AE08G to K.K., and a grant to M.M. from the Swiss National Science Foundation.
    Keywords: Fossil meteorite ; Asteroid breakup ; Winonaite ; Ordinary chondrite ; Asteroid family ; Meteorite flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schmitz, B., Farley, K. A., Goderis, S., Heck, P. R., Bergström, S. M., Boschi, S., Claeys, P., Debaille, V., Dronov, A., van Ginneken, M., Harper, D. A. T., Iqbal, F., Friberg, J., Liao, S., Martin, E., Meier, M. M. M., Peucker-Ehrenbrink, B., Soens, B., Wieler, R., & Terfelt, F. An extraterrestrial trigger for the mid-ordovician ice age: Dust from the breakup of the L-chondrite parent body. Science Advances, 5(9), (2019): eaax4184, doi:10.1126/sciadv.aax4184.
    Description: The breakup of the L-chondrite parent body in the asteroid belt 466 million years (Ma) ago still delivers almost a third of all meteorites falling on Earth. Our new extraterrestrial chromite and 3He data for Ordovician sediments show that the breakup took place just at the onset of a major, eustatic sea level fall previously attributed to an Ordovician ice age. Shortly after the breakup, the flux to Earth of the most fine-grained, extraterrestrial material increased by three to four orders of magnitude. In the present stratosphere, extraterrestrial dust represents 1% of all the dust and has no climatic significance. Extraordinary amounts of dust in the entire inner solar system during 〉2 Ma following the L-chondrite breakup cooled Earth and triggered Ordovician icehouse conditions, sea level fall, and major faunal turnovers related to the Great Ordovician Biodiversification Event.
    Description: B.Sc. was supported by the Swedish Research Council, the Knut and Alice Wallenberg Foundation, and an ERC-Advanced grant (ASTROGEOBIOSPHERE 213000). P.R.H. was supported by the Tawani Foundation. M.M.M.M. was supported by an Ambizione grant from the Swiss National Science Foundation. A.D. was supported by the Regional Governmental Program of Competitive Growth of Kazan Federal University and Russian Foundation for Basic Research (grant N19-05-00748). D.A.T.H. was supported by a fellowship from the Leverhulme Trust. S.G., P.C., M.v.G., and B.So. were supported by the Belgian Science Policy (Belspo), the FWO, and the VUB strategic program. V.D. was supported by the FRS-FNRS, Belspo, and the ERC-Starting Grant (ISoSyC 336718).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 306 (2011): 149-155, doi:10.1016/j.epsl.2011.04.028.
    Description: Abundant chromite grains with L-chondritic composition in the resurge deposits of the Lockne impact crater (458 Myr old; dia. ~10 km) in Sweden have been inferred to represent relict fragments of an impactor from the break-up of the L-chondrite parent body at 470 Ma. This view has been challenged based on Ir/Cr and platinum group element (PGE) patterns of the same resurge deposits, and a reinterpretation of the origin of the chromite grains. An impactor of the non-magmatic iron meteorite type was proposed instead. Here we show that single-grain oxygen and noble-gas isotope analyses of the chromite grains from the resurge deposits further support an origin from an L-chondritic asteroid. We also present PGE analyses and Ir/Cr ratios for fossil L-chondritic meteorites found in mid-Ordovician marine limestone in Sweden. The L-chondritic origin has been confirmed by several independent methods, including major element and oxygen isotopic analyses of chromite. Although the meteorites show the same order-of-magnitude PGE and Cr concentrations as recent L chondrites, the elements have been redistributed to the extent that it is problematic to establish the original meteorite type from these proxies. Different PGE data processing approaches can lead to highly variable results, as also shown here for the Lockne resurge deposits. We conclude that the Lockne crater was formed by an L-chondritic impactor, and that considerable care must be taken when inferring projectile type from PGEs in sedimentary ejecta deposits.
    Description: The WiscSIMS Lab is partially funded by NSF-EAR (0319230, 0516725, 0744079). The Robert A. Pritzker Center for Meteoritics and Polar Studies is supported by the Tawani Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-09-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...