GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Sharks are a diverse group of mobile predators that forage across varied spatial scales and have the potential to influence food web dynamics. The ecological consequences of recent declines in shark biomass may extend across broader geographic ranges if shark taxa display common behavioural traits. By tracking the original site of photosynthetic fixation of carbon atoms that were ultimately assimilated into muscle tissues of 5,394 sharks from 114 species, we identify globally consistent biogeographic traits in trophic interactions between sharks found in different habitats. We show that populations of shelf-dwelling sharks derive a substantial proportion of their carbon from regional pelagic sources, but contain individuals that forage within additional isotopically diverse local food webs, such as those supported by terrestrial plant sources, benthic production and macrophytes. In contrast, oceanic sharks seem to use carbon derived from between 30° and 50° of latitude. Global-scale compilations of stable isotope data combined with biogeochemical modelling generate hypotheses regarding animal behaviours that can be tested with other methodological approaches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-10
    Description: Cephalopod paralarvae and juveniles were sampled with light traps deployed at the surface and deeper in the southern NW Shelf and on Ningaloo Reef off Western Australia during two consecutive summers. One cross shelf transect (Exmouth) was sampled in the late spring and summers of 1997/1998 (summer 1) and 1998/1999 (summer 2), and a second cross shelf transect (Thevenard) and a longshore transect (Ningaloo) along the Ningaloo Reef were sampled in summer 2. Species captured in the order of abundance were octopods, Photololigo sp., Sepioteuthis lessoniana, and Sthenoteuthis oualaniensis. Most were captured in shallow traps except for Photololigo sp., which was common in both shallow and deep traps with larger animals found in deeper water. The presence of Idiosepius pygmaeus in deep water off Ningaloo Reef revealed the species to be eurytopic, inhabiting a wider range of habitats than previously known. Photololigo sp. and S. lessoniana were more abundant inshore, and octopods were especially abundant on mid-depth stations of the Exmouth transect, probably because of the turbulent mixing and increased productivity there. Fewer S. oualaniensis were caught during the first summer on the Ningaloo transect (n = 5) than during the second summer (n = 79).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2007. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 88 (2007): 1263–1277, doi:10.1890/06-0066.
    Description: Longitudinal sampling of four cohorts of Neopomacentrus filamentosus, a common tropical damselfish from Dampier Archipelago, Western Australia, revealed the evolution of size structure after settlement. Light traps collected premetamorphic individuals from the water column (“settlers”) to establish a baseline for each cohort. Subsequently, divers collected benthic juveniles (“recruits”) at 1–3-month intervals to determine the relative impacts of post-settlement mortality during the first three months. Growth trajectories for individual fish were back-calculated from otolith records and compared with nonlinear mixed-effects models. Size-selective mortality was detected in all cohorts with the loss of smaller, slower growing individuals. Three months after settlement, recruits showed significantly faster growth as juveniles, faster growth as larvae, and larger sizes as hatchlings. The timing and intensity of post-settlement selection differed among cohorts and was correlated with density at settlement. The cohort with the greatest initial abundance experienced the strongest selective mortality, with most of this mortality occurring between one and two months after settlement when juveniles began foraging at higher positions in the water column. Significant genetic structure was found between settlers and three-month-old recruits in this cohort as a result of natural selection that changed the frequency of mtDNA haplotypes measured at the control region. The extent of this genetic difference was enlarged or reduced by artificially manipulating the intensity of size-based selection, thus establishing a link between phenotype and haplotype. Sequence variation in the control region of the mitochondrial genome has been linked to mitochondrial efficiency and weight gain in other studies, which provides a plausible explanation for the patterns observed here.
    Description: The project was funded by the Australian Institute of Marine Science, the Australian European Award Program, le Ministe` re franc¸ ais des Affaires Etrange` res, ARC-DEET, Boston University, and the National Science Foundation (Biological Oceanography, OCE 0349177).
    Keywords: Growth rates ; Haplotypes ; Larval and juvenile fish ; Maternal and genetic inheritance ; Mortality ; mtDNA ; Otoliths ; Predation ; Recruitment ; Settlement ; Size selection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-08-15
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Womersley, F. C., Humphries, N. E., Queiroz, N., Vedor, M., da Costa, I., Furtado, M., Tyminski, J. P., Abrantes, K., Araujo, G., Bach, S. S., Barnett, A., Berumen, M. L., Bessudo Lion, S., Braun, C. D., Clingham, E., Cochran, J. E. M., de la Parra, R., Diamant, S., Dove, A. D. M., Dudgeon, C. L., Erdmann, M. V., Espinoza, E., Fitzpatrick, R., González Cano, J., Green, J. R., Guzman, H. M., Hardenstine, R., Hasan, A., Hazin, F. H. V., Hearn, A. R., Hueter, R. E., Jaidah, M. Y., Labaja, J., Ladinol, F., Macena, B. C. L., Morris Jr., J. J., Norman, B. M., Peñaherrera-Palmav, C., Pierce, S. J., Quintero, L. M., Ramırez-Macías, D., Reynolds, S. D., Richardson, A. J., Robinson, D. P., Rohner, C. A., Rowat, D. R. L., Sheaves, M., Shivji, M. S., Sianipar, A. B., Skomal, G. B., Soler, G., Syakurachman, I., Thorrold, S. R., Webb, D. H., Wetherbee, B. M., White, T. D., Clavelle, T., Kroodsma, D. A., Thums, M., Ferreira, L. C., Meekan, M. G., Arrowsmith, L. M., Lester, E. K., Meyers, M. M., Peel, L. R., Sequeira, A. M. M., Eguıluz, V. M., Duarte, C. M., & Sims, D. W. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark. Proceedings of the National Academy of Sciences of the United States of America, 119(20), (2022): e2117440119, https://doi.org/10.1073/pnas.2117440119.
    Description: Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (〉300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.
    Description: Funding for data analysis was provided by the UK Natural Environment Research Council (NERC) through a University of Southampton INSPIRE DTP PhD Studentship to F.C.W. Additional funding for data analysis was provided by NERC Discovery Science (NE/R00997/X/1) and the European Research Council (ERC-AdG-2019 883583 OCEAN DEOXYFISH) to D.W.S., Fundação para a Ciência e a Tecnologia (FCT) under PTDC/BIA/28855/2017 and COMPETE POCI-01–0145-FEDER-028855, and MARINFO–NORTE-01–0145-FEDER-000031 (funded by Norte Portugal Regional Operational Program [NORTE2020] under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund–ERDF) to N.Q. FCT also supported N.Q. (CEECIND/02857/2018) and M.V. (PTDC/BIA-COM/28855/2017). D.W.S. was supported by a Marine Biological Association Senior Research Fellowship. All tagging procedures were approved by institutional ethical review bodies and complied with all relevant ethical regulations in the jurisdictions in which they were performed. Details for individual research teams are given in SI Appendix, section 8. Full acknowledgments for tagging and field research are given in SI Appendix, section 7. This research is part of the Global Shark Movement Project (https://www.globalsharkmovement.org).
    Keywords: ship strike ; marine megafauna ; conservation ; movement ecology ; human impact
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-08-05
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115 (2018): 3072-3077, doi:10.1073/pnas.1716137115.
    Description: The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyse a global dataset of 2.8 million locations from 〉 2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared to more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal micro-habitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise and declining oxygen content.
    Description: Workshops funding granted by the UWA Oceans Institute, AIMS, and KAUST. AMMS was supported by an ARC Grant DE170100841 and an IOMRC (UWA, AIMS, CSIRO) fellowship; JPR by MEDC (FPU program, Spain); DWS by UK NERC and Save Our Seas Foundation; NQ by FCT (Portugal); MMCM by a CAPES fellowship (Ministry of Education).
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...