GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Grundwassersanierung ; Grundwasserleiter ; Bioremediation ; Isotopenchemie
    Description / Table of Contents: Natural attenuation, metabolite, isotope fractionation, in situ biodegradation
    Type of Medium: Online Resource
    Pages: Online-Ressource (358 S., 6,53 MB) , Ill., graph. Darst.
    Language: German , English , English
    Note: Förderkennzeichen BMBF 02WT0022. - Engl. Zsfassung u.d.T.: A new approach to quantify in situ degradation of contaminants in ground water by isotope methods , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Auch als gedr. Ausg. vorhanden , Systemvoraussetzungen: Acrobat reader. , Text teilw. in dt., teilw. in engl.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 240 (2004), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The upper pathway of anaerobic degradation of 2-methylnaphthalene was studied with a sulphate-reducing enrichment culture, which is able to grow with naphthalene or 2-methylnaphthalene as sole carbon source and electron donor. Anaerobic degradation of 2-methylnaphthalene is initiated by an addition of fumarate to the methyl-group producing the first intermediate, naphthyl-2-methyl-succinate. In a subsequent β-oxidation of the original methyl atom, the central metabolite 2-naphthoic acid is generated. In the following pathway, the aromatic ring system is reduced, cleaved, and finally oxidised to CO2. Here, we present two new enzymatic reactions of the 2-methylnaphthalene degradation pathway that were measured in crude cell extracts. All metabolites were identified with HPLC by co-elution with synthesised reference substances. The first enzyme, succinyl-CoA:naphthyl-2-methyl-succinate CoA-transferase, catalyses the activation of naphthyl-2-methyl-succinic acid to the corresponding CoA ester. The average specific activity of this enzyme was 19.6 nmol × min−1× mg of protein−1. The CoA-transfer was not inhibited by sodium borohydride and only partially by hydroxylamine, indicating that this enzyme belongs to the family III of CoA-transferases like the corresponding enzyme in the anaerobic toluene degradation pathway. The product of this CoA-transfer reaction, naphthyl-2-methyl-succinyl-CoA is then oxidised in a reaction to naphthyl-2-methylene-succinyl-CoA by the enzyme naphthyl-2-methyl-succinyl-CoA dehydrogenase. The specific activity of this enzyme was 0.115 nmol × min−1× mg of protein−1. The enzymatic activity could only be detected using phenazine methosulphate as electron acceptor. No activity was observed with natural electron acceptors such as nicotinamide adenine dinucleotide or flavin adenine dinucleotide. The two novel reactions presented here demonstrate that the original methyl-group of 2-methylnaphthalene is oxidised to the carboxyl group of 2-naphthoic acid in the upper part of the anaerobic degradation pathway.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 177 (1999), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A syntrophic coculture of a new sulfate-reducing isolate, strain TRM1, with Wolinella succinogenes degraded toluene with either fumarate or NO3− as the terminal electron acceptor. Neither strain TRM1 nor W. succinogenes could metabolise toluene under these conditions in pure culture. Syntrophic degradation was 2–3 times slower than toluene utilisation by strain TRM1 in pure culture with sulfate as electron acceptor. The culture did not produce benzoate or fatty acids like acetate or propionate in detectable amounts. An increase in biomass of the syntrophic toluene-degrading culture was shown in a growth curve with nitrate as the terminal electron acceptor. Both partner organisms were detected microscopically at the end of the growth experiment. Syntrophic degradation of toluene with W. succinogenes and fumarate as the terminal electron acceptor was also demonstrated with the iron reducer Geobacter metallireducens. The results provide the first example of a fermentative oxidation of an aromatic hydrocarbon in a defined coculture.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 22 (1998), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: This work gives an overview of the recent achievements which have contributed to the understanding of the structure and function of molybdenum and tungsten enzymes. Known structures of molybdo-pterin cofactor-containing enzymes will be described briefly and the structural differences between representatives of the same and different families will be analyzed. This comparison will show that the molybdo-pterin cofactor-containing enzymes represent a very heterogeneous group with differences in overall enzyme structure, cofactor composition and stoichiometry, as well as differences in the immediate molybdenum environment. Two recently discovered molybdo-pterin cofactor-containing enzymes will be described with regard to molecular and EPR spectroscopic properties, pyrogallol-phloroglucinol transhydroxylase from Pelobacter acidigallici and acetylene hydratase from Pelobacter acetylenicus. On the basis of its amino acid sequence, transhydroxylase can be classified as a member of the dimethylsulfoxide reductase family, whereas classification of the tungsten/molybdenum-containing acetylene hydratase has to await the determination of its amino acid sequence.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 49 (2004), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Polycyclic aromatic hydrocarbons (PAHs) are among the most important contaminants of groundwater. The 2- and 3-ring PAHs are of particular concern because they are water soluble in the 1–200 μg/l range and are transported with the groundwater over significant distances. Anaerobic degradation of PAH has been demonstrated in several microcosm studies with nitrate, ferric iron, or sulfate as electron acceptors and under methanogenic conditions. The biochemical degradation pathways were studied with naphthalene-degrading pure and enrichment cultures and revealed that 2-naphthoic acid is a central metabolite. Naphthalene is activated by addition of a C1-unit to generate 2-naphthoic acid, whereas methylnaphthalene is activated by addition of fumarate to the methyl group and further degraded to 2-naphthoic acid. In the central 2-naphthoic acid degradation pathway the ring system is reduced prior to ring cleavage generating e.g. 5,6,7,8-tetrahydro-2-naphthoic acid. The ring cleavage produces metabolites such as 2-carboxycyclohexylacetic acid indicating that further degradation goes via cyclohexane derivatives and not via aromatic compounds. Anaerobic degradation of PAH has also been demonstrated in situ in contaminated aquifers by identification of compound specific metabolites and using stable isotope fraction studies. Detection of specific metabolites of anaerobic PAH degradation such as naphthyl-2-methylsuccinate indicated anaerobic degradation of 2-methylnaphthalene in situ whereas 2-naphthoic acid was indicative of naphthalene and 2-methylnaphthalene degradation. Other carboxylic acids that were detected in groundwater indicated anaerobic degradation of a wide range of PAH and heterocyclic compounds. Degradation of naphthalenes in contaminated aquifers could also be confirmed by carbon stable isotope shifts in the residual substrate fraction.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 47 (2004), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: It is frequently observed in aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene (BTEX)-contaminated aquifers that toluene degrades faster than xylenes and benzene. In sediment column experiments which were run with a mixture of BTEX compounds toluene degradation started after a lag period of several weeks. When we omitted toluene from the culture medium o-xylene degradation started. Xylene degradation could be inhibited by adding toluene back to the medium and could be recovered when toluene was omitted again. This was observed repeatedly when toluene concentrations higher than 20 μM were added. Two sulphate-reducing bacterial species, isolated from the column material, were used to investigate the degradation behaviour in detail. Strain TRM1 degraded exclusively toluene, strain OX39 degraded preferentially o-xylene and toluene only after an adaptation period of more than 90 days when added as the sole substrate. Growth and o-xylene degradation of strain OX39 were inhibited by toluene concentrations as low as 40 μM, whereas, in contrast, toluene degradation by strain TRM1 was not inhibited by o-xylene concentrations up to 0.5 mM. Both the column data and the batch experiments indicated that two organisms were responsible for the toluene/xylene degradation in the sediment column. One strain degraded only toluene and was not effected by xylene and the second degraded xylene and was inhibited by toluene. Our findings offer an explanation that the observed differential degradation of BTEX compounds in contaminated aquifers could originate from a partial metabolic inhibition of xylene-degrading organisms by toluene.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-27
    Description: Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl) succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O-2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and naphthalene), W-cofactor-containing enzymes for reductive dearomatization of benzoyl-CoA (class II benzoyl-CoA reductase) in obligate anaerobes and addition of water to acetylene, fermentative formation of cyclohexanecarboxylate from benzoate, and methanogenic degradation of hydrocarbons.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...