GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03049, doi:10.1029/2003JC002032.
    Description: The seasonality of various characteristics of the detached bottom boundary layer of the Middle Atlantic Bight shelfbreak front is examined using a collection of high-resolution transects across the front. The analysis follows previous methodology in which accumulated temperature change along isopycnals within the front is used to infer the location of the detached layer. The seasonal mean isopycnal at which detachment occurs (approximately 26.0 kg m−3) is fairly constant throughout the year. However, the vertical scale of the detached layer varies significantly with season, extending 60−80 m above the bottom in winter and spring, but only 20−40 m above the bottom in summer. The vertical scale is controlled by the strength and depth of the seasonal pycnocline. The observations suggest that the detached layer is capable of extending into the euphotic zone during winter and spring.
    Description: This work was funded by the Office of Naval Research under contracts N00014-01-1-0931 (C. L. and G. G.) and N00014-01-1-0772 (C. L. and G. G.) and by the National Science Foundation under grant OCE-0095261 (R. P.)
    Keywords: Bottom boundary layer ; Shelfbreak front ; Middle Atlantic Bight
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1996
    Description: Description of the shelfbreak front in the Middle Atlantic Bight is hampered by the extreme variability of the front. In order to gain more insight into the mean frontal structure and associated baroclinic jet, historical data is used to produce two dimensional climatological fields of temperature and salinity for the region south of Nantucket shoals. Associated cross-shelf fields of density, geostrophic velocity, relative vorticity, and shallow water potential vorticity have also been computed. Historical data from a quality-controlled database (HydroBase) in the region 69-72°W, 39.5-41°N is included. Cross-shelf sections are obtained by averaging the data in nine depth bins with an average cross-shelf spacing of 10 km but an increased resolution of 4 km near the shelfbreak. The vertical averaging interval was 10 m over the shelf and upper slope waters, increasing to 50 m in the deep slope waters. The data were averaged in bimonthly periods to study seasonal trends. For inter-regional comparison, similar analyses were performed for the south flank of Georges Bank and the shelf off New Jersey. The climatological temperature and salinity are consistent with previous descriptions of the frontal hydrography (e.g. Wright [1976], Beardsley and Flagg [1976], and Flagg [1987]). Most importantly, features such as the "cold pool", the upper slope pycnostad, and the frontal boundary are well resolved when compared with synoptic sections. The temperature contrast across the front varies seasonally between 2-6°C near the surface and at depths of 45-65 m. The salinity contrast is 1.5-2 PSS, with little seasonal variation. The resulting cross-frontal near surface density gradients are strongest during the winter and weakest during the summer, when the seasonal thermocline is established. The crossfrontal density gradients are stronger near the bottom outcrop of the front, consistent with previous modeling studies [Gawarkiewicz and Chapman, 1992]. Despite the inherent smearing of frontal gradients incurred by averaging over large temporal and spatial scales, the geostrophic velocity field shows a strong (20-30 cm s-1) baroclinic jet associated with the cross-frontal density gradients. The core of the jet, having a width of 15-20 km, is located between the 100-120 m isobaths. The core of the jet is well shoreward of the surface expression of the front, resulting from strong density gradients at the foot of the front. The horizontal velocity shear on the cyclonic, offshore edge of the front is roughly 0.2-0.4 * 10-4 s-1, with shears on the anticyclonic, offshore edge of the jet being half as large. The potential vorticity structure is drastically affected by the seasonal pycnocline during the summer but remains relatively uniform during the winter months. Comparisons of the mean fields from Georges Bank, Nantucket Shoals, and New Jersey show that the foot of the front shoals as the flow progresses to the southwest. The seasonal migration of the frontal boundary experiences a phase shift consistent with an alongshelf propagation of minimum salinities to the southwest. Finally, transport calculations for the flow over the outer shelf and slope give values in the range of 0.1-0.6 Sv to the west. This is comparable to the estimated transport shoreward of the 100 m isobath of 0.38 Sv [Beardsley et al., 1985], which suggests that the shelfbreak frontal jet may be an extremely important element in the alongshelf transport of fresh water in this region.
    Keywords: Climatology ; Continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2008. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 66 (2008): 755-799.
    Description: The circulation north of Cape Hatteras is complicated by the proximity of the shelfbreak front, the Gulf Stream, and convergent shelf flow from the Middle and South Atlantic Bights. A three-week cruise in this region in January/February, 2005 was undertaken in order to study the structure of the shelfbreak front as it terminates near Cape Hatteras and to quantify the freshwater transport from the Middle Atlantic Bight shelf into the Gulf Stream. Two strongly contrasting conditions were identified. Early in the cruise, the Gulf Stream directly abutted the shelfbreak at Cape Hatteras and drove a northward flow over the continental shelf as far north as 35°45′N. All of the Middle Atlantic Bight shelf water terminated by 35°30′N. Ten days later, the Gulf Stream had moved away from the shelfbreak south of Cape Hatteras and strong winds from the north were present. During this time, the shelfbreak frontal jet was strong (maximum southward velocity of approximately 0.5 m s-1 with a Rossby number of 2) and abruptly turned eastward and offshore between 35°35′N and 35°45′N. Freshwater transport eastward from the shelfbreak jet was 7.4 mSv and southward over the shelf was 19.9 mSv, giving a total freshwater transport of 27.3 mSv. This likely represents an upper bound due to the strong wind forcing. Implications of these results for the freshwater budget of the Middle Atlantic Bight shelf, stability properties of the shelfbreak front in this region, and the formation of “Ford water” in the Gulf Stream are discussed.
    Description: Support for the Rutgers satellite archive is provided by NSF, ONR and NOAA. This work was supported under NSF Grant Number OCE-0327249.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...