GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Air -- Pollution -- Measurement. ; Electronic books.
    Description / Table of Contents: This book's main objective is to decipher for the reader the main processes in the atmosphere, and the quantification of air pollution effects on humans and the environment, through first principles of meteorology and modelling/measurement approaches.
    Type of Medium: Online Resource
    Pages: 1 online resource (367 pages)
    Edition: 1st ed.
    ISBN: 9789400701625
    Series Statement: Environmental Pollution Series ; v.19
    DDC: 363.7392
    Language: English
    Note: Intro -- First Principles of Meteorology and Air Pollution -- Contents -- Chapter 1: Description of the Earth´s Atmosphere -- 1.1 Introduction to Atmospheric Structure and Composition -- 1.1.1 Emissions of Air Pollutants in the Atmosphere -- 1.1.2 The Earth´s Atmosphere -- 1.1.3 Origin and Evolution of the Atmosphere -- 1.2 Atmosphere´s Characteristics -- 1.3 Lower Atmosphere´s Composition -- 1.3.1 Dry Atmospheric Air -- 1.3.2 Water in the Atmosphere -- 1.3.3 Atmospheric Aerosols -- 1.4 Vertical Division of the Atmosphere - Temperature Change -- 1.4.1 Troposphere -- 1.4.1.1 Tropopause -- 1.4.2 Boundary Layer -- 1.4.2.1 Mixing Layer -- 1.4.2.2 Residual Layer -- 1.4.2.3 Nocturnal Boundary Layer -- 1.4.3 Stratosphere -- 1.4.3.1 Stratopause -- 1.4.4 Mesosphere -- 1.4.4.1 Mesopause -- 1.4.5 Thermosphere -- 1.4.6 Exosphere -- 1.4.7 Ionosphere - Magnetosphere -- 1.5 Change of Meteorological Parameters with Height -- 1.5.1 Temperature Inversion -- 1.5.2 Air Density Variation with Height -- 1.5.3 Change of Atmospheric Pressure with Height -- 1.6 Model of the Standard Atmosphere -- 1.6.1 Units of Chemical Components in the Atmosphere -- 1.6.2 Unit Conversion of Concentration of Component I (mug/m3) to Volume Concentration (Ppm) -- 1.7 Radiation in the Atmosphere -- 1.7.1 Laws of Radiation -- 1.7.1.1 Kirchhoff´s Law -- 1.7.1.2 Planck´s Law -- 1.7.1.3 Wien´s First Law -- 1.7.1.4 Wien´s Second Law -- 1.7.1.5 Law of Stefan-Boltzmann -- 1.7.2 Sun´s Radiation -- 1.7.3 Earth´s Radiation -- 1.7.4 Factors That Affect the Sun´s Radiation Flux to Earth -- 1.7.4.1 Geographical Factors -- 1.7.4.2 Geometrical Factors -- 1.7.4.3 Radiation Decrease -- 1.7.5 Interaction of the Sun´s Radiation in the Atmosphere -- 1.7.5.1 Absorption of the Sun´s Radiation -- Oxygen (O2) -- Ozone (O3) -- Carbon dioxide (CO2) -- Water Vapor (H2O) -- 1.7.5.2 Scattering of the Sun´s Radiation. , Rayleigh Scattering -- Mie Scattering -- 1.7.6 Greenhouse Effect -- 1.7.7 Energy Balance of Earth and its Atmosphere -- 1.7.8 Distribution of Sun´s Radiation at the System Atmosphere-Surface -- 1.7.9 The Earth´s Climate -- 1.7.9.1 Climate Change - Reasoning -- 1.8 Examples -- 1.9 Ambient Air Quality Standards -- 1.10Appendixes -- 1.10.1Appendix1: The Hydrostatic Equation -- References -- Chapter 2: First Principles of Meteorology -- 2.1 General Aspects of Meteorology -- 2.2 Vertical Structure of the Temperature and Conditions of Atmospheric Stability -- 2.2.1 Dry Vertical Temperature Lapse Rate -- 2.2.2 Wet Vertical Temperature Lapse Rate -- 2.2.3 Temperature Inversion -- 2.3 Atmospheric Variability - Air Masses - Fronts -- 2.3.1 Air Masses -- 2.3.2 Classification of Air Masses -- 2.3.3 Fronts -- 2.3.3.1 Polar Front -- 2.3.3.2 Cold Front -- 2.3.3.3 Warm Front -- 2.3.3.4 Stationary Fronts -- 2.3.3.5 Occluded Fronts -- 2.3.4 Wave Cyclone -- 2.4 Turbulence - Equations for the Mean Values -- 2.5 Statistical Properties of Turbulence -- 2.6 Atmospheric Temperature -- 2.6.1 Temperature Season Variability -- 2.6.2 Temperature Daily Variability -- 2.6.3 Heating of the Earth´s Surface and Heat Conduction -- 2.6.4 Distribution of Temperature in the Air -- 2.7 Humidity in the Atmosphere -- 2.7.1 Mathematical Expressions of Humidity in the Atmosphere -- 2.7.1.1 Absolute Humidity (B) -- 2.7.1.2 Specific Humidity (Q) -- 2.7.1.3 Mixing Ratio (R) -- 2.7.1.4 Relative Humidity (RH) -- 2.7.2 Dew Point -- 2.7.2.1 The Evaporation of Water at Cold Air -- 2.7.2.2 The Freezing of Humid Air -- 2.7.3 Clouds in the Atmosphere -- 2.7.4 Precipitation -- 2.7.5 Study of Precipitation Scavenging -- 2.8 Applications and Examples -- References -- Chapter 3: Atmospheric Circulation -- 3.1 Atmospheric Pressure and Pressure Gradient Systems -- 3.2 Atmospheric Pressure Changes. , 3.2.1 Vertical Pressure Changes -- 3.2.2 Non-canonical Pressure Changes -- 3.2.3 Canonical Pressures Changes -- 3.3 Transfer of the Pressure to Its Mean Value at Sea Level -- 3.4 Isobaric Curves: Pressure Gradient Systems -- 3.5 Pressure Gradient Force -- 3.6 Movement of Air: Wind -- 3.6.1 Forces Which Affect the Movement of Air -- 3.6.1.1 Coriolis Force -- 3.6.1.2 Friction Force -- 3.6.1.3 Centrifugal and Centripetal Forces -- 3.6.2 Transport Equations of Air Masses in the Atmosphere -- 3.6.3 Wind Categories -- 3.6.3.1 Geostrophic Wind -- 3.6.3.2 Pressure Gradient Wind -- 3.6.3.3 Friction Wind: Law of Buys-Ballot -- 3.6.3.4 Wind at the Surface Layer -- 3.7 General Circulation in the Atmosphere -- 3.7.1 Single and Three Cell Models -- 3.7.2 Continuous Winds -- 3.7.3 Periodic Winds -- 3.7.4 Sea and Land Breeze -- 3.7.5 Mountain and Valley Breezes -- 3.8 Vertical Structure of Pressure Gradient Systems -- 3.9 Equations of Atmospheric Circulation -- 3.9.1 Equations of Circulation for a Compressible Fluid -- References -- Chapter 4: Atmospheric Chemistry -- 4.1 Chemical Components in the Atmosphere -- 4.2 Chemistry of the Troposphere -- 4.2.1 Sulphur Components -- 4.2.2 Nitrogen Components -- 4.2.3 Carbon Components -- 4.2.4 Halogen Components -- 4.3 Particulate Matter -- 4.4 Photochemistry in the Free Troposphere -- 4.4.1 Photochemical Cycle of Ozone and Nitrogen Oxides -- 4.4.2 Chemistry of Carbon Dioxide -- 4.4.3 Chemistry of Hydrocarbons -- 4.4.4 Chemistry of Sulphur Compounds -- 4.5 Components of Aquatic Chemistry in the Atmosphere -- 4.6 Chemistry of the Stratosphere - Ozone -- References -- Chapter 5: Atmospheric Aerosols -- 5.1 Introduction -- 5.2 Size Distribution of Aerosols -- 5.3 Chemical Composition of Aerosols -- 5.4 Organic Aerosols -- 5.4.1 Elemental Carbon- Primary Organic Carbon. , 5.4.2 Secondary Organic Matter Formation (Secondary Organic Carbon) -- 5.5 Dynamics of Atmospheric Particulate Matter -- 5.5.1 New Particle Formation -- 5.5.1.1 Nucleation Theory - Kinetic Method -- 5.5.1.2 Calculation of the Nucleation Rate -- 5.5.1.3 Heterogeneous Nucleation -- 5.5.2 Condensation and Evaporation -- 5.5.3 Coagulation -- 5.6 Bioaerosols - Definition -- References -- Chapter 6: Atmospheric Dispersion: Gaussian Models -- 6.1 Theories of Atmospheric Diffusion -- 6.2 Euler Description -- 6.3 Lagrange Description -- 6.4 Equations Describing the Concentration of Pollutants at Turbulent Conditions -- 6.4.1 Diffusion Equation in Euler Description -- 6.4.2 Diffusion Equation in Lagrange Description -- 6.4.3 Solution of the Diffusion Equation for a Continuous Source with the Euler Methodology -- 6.5 Gaussian Model -- 6.5.1 Limitations of the Gaussian Model -- 6.5.1.1 Conditions of Intense Instability -- 6.5.1.2 Emissions Close to the Surface -- 6.5.2 Calculation of the sigmay and sigmaz Coefficients. Stability Methodology -- 6.5.3 Plume Rise -- 6.5.3.1 Plume Rise due to Initial Momentum Under Neutral or Unstable Stability Conditions in the Atmosphere -- 6.5.3.2 Thermal Rise Under Neutral or Unstable Stability Conditions in the Atmosphere -- 6.5.3.3 Stable Conditions -- 6.5.3.4 Plume Rise due to Momentum Under Stable Conditions -- 6.5.3.5 Thermal Rise Under Stable Atmospheric Conditions -- 6.5.4 Atmospheric Stability - Application to the Gaussian Models -- 6.6 Analytical Solutions of the Atmospheric Diffusion Equation -- 6.7 Two-Dimensional, Time Independent Line-Continuous Source with Changing Values of Velocity and Diffusion Coefficient -- 6.8 Characteristics of Plume Dispersion - Stability Conditions -- 6.9 Examples and Applications -- 6.10Appendix6.1The Continuity Equation -- References. , Chapter 7: Atmospheric Models: Emissions of Pollutants -- 7.1 Introduction -- 7.2 Dispersion Equations for Pollutant Transport at the Euler and Lagrange Coordinating Systems -- 7.2.1 Model of a Single Volume in the Euler System -- 7.2.2 Three Dimensional Models of Atmospheric Pollution -- 7.3 Statistical Evaluation of Atmospheric Models -- 7.4 Emissions of Atmospheric Pollutants -- 7.5 Emissions from the Biosphere -- 7.5.1 Emissions of Volatile Organic Compoundsfrom Vegetation -- 7.5.2 Calculation of Biogenic Emissions -- 7.5.3 Sea Salt Emissions -- 7.5.4 Emissions of Air Pollutants from the Earth´s Surface -- 7.5.5 Emissions of Pollutants from Forest Fires -- 7.6 Examples and Applications -- References -- Chapter 8: Indoor Air Pollution -- 8.1 Introduction to Indoor Air Quality -- 8.2 Ozone -- 8.3 Nitrogen Oxides -- 8.4 Volatile Organic Compounds -- 8.5 Chemistry of Organic Compounds Indoors -- 8.6 Radon -- 8.6.1 Radiactive Decay of Radon Isotopes -- 8.6.2 Exposure and Dose of Radon in Indoor Environment -- 8.6.3 Examples -- 8.7 Carbon Monoxide -- 8.8 Asbestos -- 8.9 Heavy Metals -- 8.10 Formaldehyde -- 8.11 Pesticides -- 8.12 Polycyclic Aromatic Hydrocarbons (PAH) -- 8.13 Polychloric Biphenyls (Pcbs) -- 8.14 Tobacco Smoke -- 8.15 Bioaerosols -- 8.16 Microenvironmental Models -- 8.17 Air Exchange Rate by Infiltration -- 8.18 Emission Models -- 8.19 Deposition Models -- 8.19.1 Examples -- References -- Chapter 9: Human Exposure and Health Risk from Air Pollutants -- 9.1 Human Exposure and Doses from Air Pollutants -- 9.2 Exposure Pathways -- 9.2.1 Dermal Absorption -- 9.2.2 Inhalation Exposure -- 9.3 Calculation of Dose-Response Functions -- 9.3.1 Dose Calculation Through Intake -- 9.3.2 Internal Dose Calculation Through Dermal Absorption -- 9.3.3 Internal Dose Calculation Through Inhalation and Food Intake -- 9.3.4 Functions of Dose-Response. , 9.4 Particulate Matter Dose Through Inhalation.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Pollution -- Physiological effect. ; Electronic books.
    Description / Table of Contents: This book reviews information necessary to address the steps in exposure assessment relevant to air pollution. It identifies available information and shows that an integrated multi-route exposure model can be used as part of an air quality management process.
    Type of Medium: Online Resource
    Pages: 1 online resource (312 pages)
    Edition: 1st ed.
    ISBN: 9789048186631
    Series Statement: Environmental Pollution Series ; v.17
    DDC: 363.732
    Language: English
    Note: Intro -- Preface -- Contributors -- Trond Bøhler -- Martin Braniš -- Ian Colbeck -- Christos Housiadas -- Chapter 1 -- Environmental Levels -- 1.1 Introduction -- 1.2 Primary Emissions of Air Pollutants -- 1.3 Ambient Air Quality Standards -- 1.4 Ambient Air Pollution Concentrations Over Europe -- 1.4.1 Ambient Levels of Gaseous Pollutants -- 1.4.2 Ambient Levels of Particulate Matter -- 1.5 Composition of PM10 -- 1.6 Indoor Air Pollution -- 1.7 Drinking Water Quality -- 1.7.1 Standards -- 1.7.2 Disinfection By-products -- 1.7.3 THM Concentrations -- References -- Chapter 2 -- Indoor Air Pollution -- 2.1 Introduction -- 2.2 Indoor-Outdoor Measurements in Oslo -- 2.3 Particle Emission Rates -- 2.4 Bioaerosols -- 2.4.1 Indoor Concentrations -- 2.4.2 Size Distribution -- 2.5 Indoor Air Quality in Developing Countries -- 2.6 Transport Micro-environments -- 2.7 Summary -- References -- Chapter 3 -- Chemical Reactions Among Indoor Pollutants -- 3.1 Introduction -- 3.2 Indoor Air Quality Models That Incorporate Chemistry -- 3.3 Ozone and Related Chemistry -- 3.3.1 Homogeneous Chemistry -- 3.3.1.1 Indoor Smog Chemistry -- 3.3.1.2 Ozone and Organic Compounds -- 3.3.1.3 Hydroxyl Radical Chemistry -- 3.3.1.4 Nitrate Chemistry -- 3.4 Heterogeneous Ozone Chemistry -- 3.4.1 Ozone and Carpet -- 3.4.2 Latex Paint -- 3.4.3 HVAC Materials -- 3.4.4 Surface Aging and Regeneration by Soiling -- 3.5 Auto-oxidation, Hydrolysis, Acid-Base, and Chlorine Chemistry -- 3.5.1 Auto-oxidation -- 3.5.2 Hydrolysis -- 3.5.3 Acid-Base Chemistry -- 3.5.4 Chlorine Chemistry -- 3.6 Control of Indoor Chemistry and Control in Indoor Air Quality Using Chemistry -- 3.6.1 Control of Ozone Chemistry -- 3.6.2 Misguided Chemistry for Controlling Indoor Air Quality -- 3.7 Summary -- References -- Chapter 4 -- Personal Exposure Measurements -- 4.1 Introduction. , 4.2 Concepts and Definitions of Personal Exposure -- 4.2.1 Basic Risk Model -- 4.2.2 Exposure -- 4.3 Direct Approach -- 4.3.1 Selection of a Sample Population -- 4.3.2 Personal Samplers -- 4.3.2.1 Personal Monitoring of Particulate Matter -- 4.3.2.2 Personal Monitors for Gases and Vapours -- 4.3.2.3 Future Trends in Personal Exposure Measurements -- 4.4 Indirect Approach -- 4.4.1 Fixed-Site Monitoring Approach -- 4.4.2 Microenvironmental Approach -- 4.4.2.1 Human Activity Information -- 4.4.3 Biomonitoring -- 4.4.3.1 Biomarkers -- 4.5 Conclusions -- References -- Chapter 5 -- Health Effects of Air Pollutants -- 5.1 Introduction -- 5.2 Epidemiological Evidence and Mechanisms of Toxicity -- 5.3 Outdoor Air Pollutants -- 5.3.1 Inorganic Gases -- 5.3.1.1 Sulphur Dioxide -- Mechanisms of Action -- Short-term Effects -- Long-Term Effects -- 5.3.1.2 Nitrogen Dioxide -- Mechanisms of Action and Chamber Studies -- Short-Term Effects -- Long-Term Effects -- 5.3.1.3 Ozone -- Mechanisms of Action and Chamber Studies -- Short-Term Effects -- Long-Term Effects -- 5.3.1.4 Carbon Monoxide -- Mechanisms of Action -- Short-Term Effects -- Long-Term Effects -- 5.3.2 Particles -- 5.3.2.1 Mechanism of Action -- 5.3.2.2 Short-Term Effects -- 5.3.2.3 Long-Term Effects -- 5.3.2.4 Health Effects of Ultrafine Particles -- 5.3.2.5 Lead -- 5.3.3 Organic Gases -- 5.3.3.1 Benzene -- Mechanisms of Action -- Carcinogenicity -- Other Health Effects -- 5.3.3.2 1,3-Butadiene -- Mechanisms of Action -- Carcinogenicity -- Other Health Effects -- 5.3.3.3 Formaldehyde -- Mechanisms of Action -- Carcinogenicity -- Other Health Effects -- 5.3.3.4 Benzo[a]pyrene -- Mechanisms of Action -- Carcinogenicity -- Other Health Effects -- 5.3.4 Biological Contaminants -- 5.3.4.1 Pollen -- 5.3.4.2 Fungi -- 5.3.4.3 Bacteria -- 5.3.4.4 Algae -- 5.4 Indoor Air Pollutants. , 5.5 Indoor Air Pollution in Developing Countries -- 5.6 Multi-pollutant Mixtures -- 5.7 Health-Based Air Quality Guidelines and Regulations -- 5.8 Risk Analysis and Health Impact Assessment -- 5.9 Discussion and Conclusions -- References -- Chapter 6 -- Inhalation Dosimetry Modelling -- 6.1 Introduction -- 6.2 Physicochemical Properties of Aerosols -- 6.3 The Respiratory System -- 6.4 Deposition and Clearance Mechanisms -- 6.4.1 Deposition of Particles in the Human Respiratory Tract -- 6.4.2 Particle Clearance in the Human Respiratory Tract -- 6.5 Particle Deposition Measurements -- 6.6 Computational Methods -- 6.6.1 Classification of Models -- 6.6.2 Empirical Compartmental Modeling: The ICRP Model -- 6.7 Whole-RT 1D Mechanistic Modeling -- 6.7.1 Lagrangian Modelling -- 6.7.2 Eulerian Modelling -- 6.7.3 Stochastic Lung Modelling -- 6.7.4 Aerosol Dynamics Effects -- 6.8 CFD-Based Mechanistic Modeling -- 6.8.1 Airflow Within the Respiratory Tract -- 6.8.1.1 Airway Ventilation -- 6.8.1.2 Velocity Field -- 6.8.1.3 Mixing of Fresh and Resident Air -- 6.8.1.4 Particle Deposition in the Respiratory Tract -Extrathoracic models -- References -- Chapter 7 -- Dermal Absorption Modelling -- 7.1 Introduction -- 7.2 The Dermal Absorption Barrier -- 7.2.1 General Structure of Skin -- 7.2.2 Other "Barriers" to Absorption -- 7.3 Animal Models -- 7.4 Experimental Approaches -- 7.4.1 In Vivo Approaches -- 7.4.2 In Vitro Approaches -- 7.5 Mathematical Modeling Considerations -- 7.5.1 QSAR Approach -- 7.5.2 Mixture Exposure -- 7.6 Conclusion -- References -- Chapter 8 -- Micro-environmental Modelling -- 8.1 Introduction -- 8.2 Simple Indoor Air Models -- 8.2.1 Indoor-Outdoor Air Exchange Process: Ventilation Rate -- 8.2.2 Penetration Process -- 8.2.3 Deposition Process on Indoor Surfaces -- 8.3 Multiple-Component Indoor Air Models: Sectional Indoor Air Models. , 8.3.1 Interpretation of Particle Size-Sections in a SIAM -- 8.4 Multiple-Compartment and Multiple-Component Indoor Air Models: General Formulation -- 8.4.1 Aerosol Dynamic Scheme UHMA -- 8.4.1.1 Coagulation -- 8.4.1.2 Condensation of Vapours -- 8.4.2 Indoor-Outdoor Air Exchange and the Penetration Process -- 8.4.3 Internal Air Exchange Between Indoor Compartments -- 8.4.4 Deposition and Re-suspension Processes -- 8.5 Mathematical Solutions and Applications of Indoor Air Models -- 8.5.1 Analytical Solution for a Simple Indoor Air Model -- 8.5.1.1 Steady-State Conditions -- 8.5.1.2 The Infiltration Factor, INF -- 8.5.2 Estimation of the Controlling Parameters with a SIAM -- 8.5.3 Numerical Simulations -- 8.5.4 Indoor Sources and Emission Rate Estimation -- 8.5.4.1 Semi-empirical Estimation of the Emission Rate -- References -- Chapter 9 -- Air Quality Management and Personal Exposure -- 9.1 Introduction -- 9.2 Air Quality Management and Assessment -- 9.3 Management Systems -- 9.3.1 Design of Air Quality Monitoring Networks -- 9.3.2 Emission Inventories -- 9.3.2.1 Point Sources -- 9.3.2.2 Line Sources -- 9.3.2.3 Area Sources -- 9.3.3 Meteorological Models -- 9.3.3.1 Meteorological Measurements -- 9.3.3.2 Wind Field Modelling -- 9.3.4 Atmospheric Dispersion Models -- 9.3.5 Population Exposure -- 9.3.5.1 Grid Square Exposure -- 9.3.5.2 Sub Grid Exposure -- 9.3.5.3 Personal Exposure -- 9.4 Urban Exposure Management Tool -- 9.4.1 Introduction -- 9.4.2 Particulate Matter -- 9.4.3 Multi Pathway Gas Uptake -- 9.4.4 The Tool for Calculating Personal Exposure -- 9.4.4.1 Personal Characteristics and Daily Routine -- 9.4.4.2 Indoor Sources -- 9.4.4.3 Features -- 9.4.4.4 Multi Pathway Gas Uptake -- 9.5 Case Studies -- 9.5.1 Oslo Case Study Results -- 9.5.1.1 Case 1: Travelling Alternatives -- 9.5.2 Cases 2 and 3 -- 9.6 Summary of Case Studies -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 7411-7413 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The classical hydrates interaction model presented by Jaecker-Voirol et al. is extended into systems where the gas-phase number concentrations of acid and water molecules are of the same order of magnitude. Besides the sulfuric acid–water system, the hydrogen iodide–water and the nitric acid–water systems are considered. The distribution Nh,k of hydrates containing h water and k acid molecules has been calculated as a function of relative humidity and relative acidity. An extended formula for the Gibbs free energy of droplet formation is derived. The fraction of free molecules to the total number of molecules (free molecules+hydrates) is solved numerically and therefore the equilibrium constants of hydrate formation are not needed. Hydrate formation often has a significant effect on energetics of nucleation in the acid–water systems and the extended hydrates interaction model represents a definite improvement over the older hydrates interaction model.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 5426-5429 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The aim of the present work is to construct a model of heterogeneous nucleation based on a statistical mechanical derivation as an alternative to the classical model based on continuum thermodynamics. The result is similar to the classical approach, but the relation to the underlying microscopic physics is clearer. In our approach, we make use of the capillarity approximation using a cluster potential energy that is independent of the position of the molecules in the cluster. The model has a qualitative agreement with the experimental results of Mahata and Alofs for the heterogeneous nucleation of water on different substrates.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 112 (1999), S. 171-185 
    ISSN: 1573-2932
    Keywords: aerosol-sulfate ; dispersion ; formation of secondary aerosols
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The present paper investigates the transport, formation and dynamics of atmospheric sulfate particles under different meteorological conditions from point sources. Emissions of SO2 from one and multiple local point sources were modeled. The advection and diffusion of gaseous and particulate matter are described by the atmospheric diffusion equation which is solved numerically using a new developed 3-dimensional model. The evolution of the aerosol size distribution with time was described using the aerosol general dynamic equation. Under fog conditions aqueous phase oxidation is the primary mechanism for sulfate formation. The condensation mechanism from the vapor to liquid phase is the dominant process for sulfate production at moderate relative humidities. The observed mass size distribution of sulfate suggests that the major contribution in the mass size distribution during continental conditions is from long range transport.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...