GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: The last interglaciation (~130 to 116 ka) is a time period with a strong astronomically induced seasonal forcing of insolation compared to the present. Proxy records indicate a significantly different climate to that of the modern, in particular Arctic summer warming and higher eustatic sea level. Because the forcings are relatively well constrained, it provides an opportunity to test numerical models which are used for future climate prediction. In this paper we compile a set of climate model simulations of the early last interglaciation (130 to 125 ka), encompassing a range of model complexities. We compare the simulations to each other and to a recently published compilation of last interglacial temperature estimates. We show that the annual mean response of the models is rather small, with no clear signal in many regions. However, the seasonal response is more robust, and there is significant agreement amongst models as to the regions of warming vs cooling. However, the quantitative agreement of the model simulations with data is poor, with the models in general underestimating the magnitude of response seen in the proxies. Taking possible seasonal biases in the proxies into account improves the agreement, but only marginally. However, a lack of uncertainty estimates in the data does not allow us to draw firm conclusions. Instead, this paper points to several ways in which both modelling and data could be improved, to allow a more robust model–data comparison.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-02-27
    Description: Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( 〉  800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene ( ∼  50  Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 ×  CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP – the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Climate of the Past, Copernicus Publications, 8(6), pp. 1781-1799, ISSN: 1814-9332
    Publication Date: 2019-07-17
    Description: Interpreting stable oxygen isotope (δ18O) records from stalagmites is still one of the complex tasks in speleothem research. Here, we present a novel model-based approach, where we force a model describing the processes and modifications of δ18O from rain water to speleothem calcite (Oxygen isotope Drip water and Stalagmite Model – ODSM) with the results of a state-of-the-art atmospheric general circulation model enhanced by explicit isotope diagnostics (ECHAM5-wiso). The approach is neither climate nor cave-specific and allows an integrated assessment of the influence of different varying climate variables, e.g. temperature and precipitation amount, on the isotopic composition of drip water and speleothem calcite. First, we apply and evaluate this new approach under present-day climate conditions using observational data from seven caves from different geographical regions in Europe. Each of these caves provides measured δ18O values of drip water and speleothem calcite to which we compare our simulated isotope values. For six of the seven caves modeled δ18O values of drip water and speleothem calcite are in good agreement with observed values. The mismatch of the remaining caves might be caused by the complexity of the cave system, beyond the parameterizations included in our cave model. We then examine the response of the cave system to mid-Holocene (6000yr before present, 6ka) climate conditions by forcing the ODSM with ECHAM5-wiso results from 6ka simulations. For a set of twelve European caves, we compare the modeled mid-Holocene-to-modern difference in speleothem calcite δ18O to available measurements. We show that the general European changes are simulated well. However, local discrepancies are found, and might be explained either by a too low model resolution, complex local soil-atmosphere interactions affecting evapotranspiration or by cave specific factors such as non-equilibrium fractionation processes. The mid-Holocene experiment pronounces the potential of the presented approach to analyse δ18O variations on a spatially large (regional to global) scale. Modelled as well as measured European δ18O values of stalagmite samples suggest the presence of a strong, positive mode of the North Atlantic Oscillation at 6 ka before present, which is supported by the respective modelled climate parameters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, (9), pp. 89-98, ISSN: 1814-9324
    Publication Date: 2019-07-17
    Description: A synthetic stalagmite δ18O record for the Bunker Cave (51° N, 7° E) is constructed using a combined climate–stalagmite modelling approach where we combine an atmospheric circulation model equipped with water isotopes and a model simulating stalagmite calcite δ18O values. Mixing processes in the soil and karst above the cave represent a natural low-pass filter of the speleothem climate archive. Stalagmite δ18O values at Bunker Cave lag the regional surface climate by 3–4 yr. The power spectrum of the simulated speleothem calcite δ18O record has a pronounced peak at quasi-decadal time scale, which is associated with a large-scale climate variability pattern in the North Atlantic. Our modelling study suggests that stalagmite records from Bunker Cave are representative for large-scale teleconnections and can be used to obtain information about the North Atlantic and its decadal variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...