GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  [Talk] In: Minisymposium "Küstengewässer" des LLUR Schleswig-Holstein, 26.03.2014, Flintbek, Germany .
    Publication Date: 2014-04-24
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Institut für Polarökologie Kiel
    In:  Mitteilungen zur Kieler Polarforschung, 11 . pp. 18-20.
    Publication Date: 2019-09-23
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  In: Offshore wind energy : research on environmental impacts. , ed. by Köller, J., Köppel, J. and Peters, W. Springer, Heidelberg, pp. 65-75.
    Publication Date: 2012-02-23
    Type: Book chapter , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-26
    Description: Movements of animals provisioning offspring by central place foraging extend from short, highly local trips where food is brought back essentially unchanged from its normal condition to extensive interseasonal movement where the offspring are nourished from body reserves built up during the adult's absence from the breeding site. Here, appropriate strategies for maximizing lifetime reproductive success depend on the abundance and location of prey in relation to breeding sites and the energetics and speed of travel of the animal. Magellanic Penguins Spheniscus magellanicus undertake central place movements that are particularly variable during the incubation period; trips may last from a single day to over three weeks depending on colony locality. We reasoned that site-specific variability in prey distribution and abundance is responsible for this. Remote-sensing systems attached to 92 penguins from six different colonies over the species distributional range over the Patagonian Shelf were used to determine space use and foraging patterns in an attempt to understand the observed patterns. Birds in the north and south of the latitudinal range were essentially monophagic, feeding primarily on anchovies Engraulis anchoita and sprats Sprattus fuegensis, respectively, both species that are to be found relatively close to the colonies. Penguins in the center of the distributional range, where these pelagic school fish prey are essentially absent at that time of the year, traveled either north or south, to the same regions utilized by their conspecifics, presumably to exploit the same prey. A simple model is used to clarify patterns and can be used to predict which movement strategy is likely to be best according to colony location. During chick rearing, southerly movement of anchovies and northerly movement of sprats mean that Magellanic Penguins in the center of the distributional range may benefit, although the abundance of these fish is considered to be less than that closer to the Magellanic Penguin range limits. The extensive time involved in the foraging trips during incubation coupled with the postulated poorer prey conditions during the chick-rearing phase may help explain why Magellanic Penguin colony sizes in the center of the range are not elevated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-03-14
    Description: We looked at the routes taken by Magellanic Penguins up the beach while moving between the sea and the colony at a breeding site in San Julian, Argentina. Birds swam parallel to the shore for a period before leaving the water to cross the beach but trajectories over the beach were not perpendicular to the water's edge but at an angle of 39°. We examined the premise that birds might be optimizing for a trade off between time or energy by adopting this procedure and found that birds can gain little or no time by walking obliquely but can, under particular circumstances, save energy. These circumstances require that the previously-calculated costs of transport for walking have been over-estimated by a factor of two
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: We examined how seabirds might be used to study marine environmental variables, which necessitates knowing location and the value of the variable to be studied. Five systems can potentially be used for determination of location: VHF (Very High Frequency) telemetry, PTT (Platform Terminal Transmitters) telemetry, GLS (Global Location Service) geolocation methods, dead reckoning and GPS (Global Positioning System), each with its own advantages with respect to accuracy, potential number of fixes and size. Temperature and light were used to illustrate potential difficulties in recording environmental variables. Systems currently used on seabirds for measurement of temperature respond slowly to environmental changes; thus, they may not measure sea surface temperature adequately when contact periods with water bodies are too short. Light can be easily measured for light extinction studies, but sensor orientation plays a large role in determining recorded values. Both problems can be corrected. The foraging behaviour of seabirds was also examined in order to identify those features which would be useful for determination of marine environmental variables at a variety of spatial and temporal scales. Area coverage by birds is highly dependent on breeding phase and tends to be concentrated in areas where prey acquisition is particularly enhanced. The identification of these sites may be of particular interest to marine biologists. 'Plungers' and 'divers' are potentially most useful for assessment of variables deeper within the water column, with some divers spending up to 90% of their time sub-surface. Few seabirds exploit the water column deeper than 20 m, although some divers regularly exceed 50 m (primarily penguins and auks), while 2 species dive in excess of 300 m. The wide-ranging behaviour of seabirds coupled, in many instances, with their substantial body size makes them potentially excellent carriers of sophisticated environmental measuring technology; however, the ethical question of how much the well-being of birds can, and should, be compromised by such an approach needs to be carefully considered.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...