GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 345 (1990), S. 521-524 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 364 (1993), S. 433-436 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Studies of the continental margins of the North Atlantic have shown that voluminous igneous activity, on a scale rivalling the largest continental flood basalt provinces, accompanied the onset of sea-floor spreading1'12. Igneous activity on these 'volcanic margins' is shown in seismic data as ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-23
    Description: Western Aleutian seafloor lavas define a highly calc-alkaline series, with Mg numbers (Mg#, Mg/Mg+Fe) greater than 0.65 in dacitic lavas with 2-4% MgO at 63-70% SiO2. These lavas have uniformly radiogenic Hf and Nd and variable, but relatively unradiogenic, Sr and Pb, at the MORB-like end of the spectrum of island-arc lavas. Andesites and dacites have high Sr 〉1000 ppm, fractionated trace element patterns (Sr/Y=50-350, La/Yb=8-35, Dy/Yb=2-3.5), and low relative abundances of Nb and Ta (La/Ta=100-300), consistent with an enhanced role for residual or cumulate garnet + rutile. MORB-like isotope compositions and high MgO and Mg# relative to silica, rule out an origin for the andesites and dacites by fractional crystallization from basalt, except perhaps, by a process of melt-rock reaction with peridotite. The most fractionated trace element patterns are in western seafloor rhyodacites (69-70% SiO2), which were dredged from volcanic cones built on Bering Sea oceanic lithosphere, where the crust is probably no more than 10 km thick, and so unlikely to produce garnet during crustal melting. We interpret the western seafloor andesites and dacites to have been produced by melting of subducted MORB-like basalt in the eclogite facies, followed by interaction of the resulting high-silica melt with mantle peridotite. This interpretation is consistent with the tectonic setting in the western Aleutians, which is dominated by oblique convergence, capable of producing a relatively hot subducting plate. Western seafloor lavas define an end-member composition with MORB-like isotope compositions and fractionated trace element ratios, which falls at the end of the continuum of compositions for all Aleutian lavas. The end-member character of western seafloor lavas is clearest in plots highlighting their radiogenic Hf, Nd and strong relative depletions in Ta and Yb. The western seafloor lavas also define an end-member composition for Pb isotopes Some western seafloor samples have high Nd/Hf, as required by Hf-Nd mixing scenarios, which indicate that a source component with radiogenic Hf and Nd and Nd/Hf greater than ~8, is present in lavas throughout the Aleutian arc (Brown et al., 2005 Fall AGU). Abundances of radiogenic Nd and Hf in the eclogite-melt component are relatively high, and so offset the unradiogenic Hf and Nd from subducted sediment. The result is a source mixture with much higher contributions of both subducted basalt and subducted sediment relative to the mantle end-member, than is produced when these elements are modeled as binary mixtures of mantle and sediment.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  [Invited talk] In: AGU Fall Meeting 2011, 05.-09.12.2011, San Francisco, USA .
    Publication Date: 2012-02-23
    Description: Results of the Western Aleutian Volcano Expedition and German-Russian KALMAR cruises include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts 300 km west of Buldir, the westernmost emergent volcano in the Aleutian arc. These discoveries indicate that the surface expression of active Aleutian volcanism goes below sea level just west of Buldir, but is otherwise continuous along the full length of the arc. Many lavas dredged from western Aleutian seamounts are basalts, geochemically similar to basalts from elsewhere in Aleutians and other arcs (La/Yb 4-8, Sr/Y〈30, 87Sr/86Sr=0.7031-0.7033). Western Aleutian dredge samples also include high-Sr lavas (〉700 ppm Sr), which are mostly plagioclase-hornblende andesites and dacites with low Y and middle-heavy rare-earth elements, fractionated trace element patterns (Sr/Y=50-200, La/Yb=9-25) and MORB-like isotopes (87Sr/86Sr 〈 0.7028). The endmember Sr-rich lavas are magnesian rhyodacites (SiO2~68%, Mg# 〉0.65) with 1250-1700 ppm Sr, 4-7 ppm Y, low abundances of all rare-earth elements (La〈7 ppm, Yb〈0.4 ppm) and 87Sr/86Sr 〈 0.70266. The high silica and primitive (high Mg#) character of the high-Sr lavas, combined with their strongly fractionated trace element patterns and MORB-like isotopes are consistent with a source predominantly of subducted basalt and a melt residue that contained garnet. The high-Sr lavas have some characteristics of MORB fluids (low Ce/Pb and unradiogenic Pb), and their highly calc-alkaline nature implies high pre-eruptive water contents[1], but low 87Sr/86Sr indicates that their source was in MORB, not seawater-altered MORB. The high-Sr endmember is clearly present in andesites from some emergent volcanoes in the western Aleutians, and mixing arrays indicate that it may be present in all Aleutian lavas (e.g., 87Sr/86Sr vs. La/Yb or Sr/Y); however, radiogenic Pb and Sr from subducted sediment renders the high-Sr endmember isotopically invisible in most central and eastern Aleutian lavas. The geochemistry of small monogenetic sea-floor volcanoes--especially those in the back-arc--may be the best opportunity to identify the high-Sr endmember in central and eastern Aleutian locations. The existence of primitive, high-silica lavas in the western Aleutians, where the subducting plate is probably unusually hot, may also provide key observations toward an improved understanding of high-Mg# andesites and dacites from other hot-slab locations, especially in the Cascades and Central Mexico.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-04-06
    Description: This chapter has four main aims. Provide a comprehensive picture of the composition of volcanic rocks from subduction-related magmatic arcs. Review evidence in favor of the existence of andesitic, as well as basaltic primary magmas in arcs. Present new data on the composition of arc lower crust, based mainly on our work on the Talkeetna arc section in southcentral Alaska. Summarize evidence from arc lower crustal sections that a substantial proportion of the dense, lower crustal pyroxenites and garnet granulites produced by crystal fractionation are missing.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-11-08
    Description: Sr provides unique constraints on subduction magma source models because it is a fluid-mobile element that is abundant and relatively unradiogenic in arc volcanic rocks. It is common for arc basalts to be 3-4-times more Sr-rich than similarly evolved MORB (Sr/Nd = 30-50 vs 10-15 in MORB) yet Sr isotopes in arc basalts are usually offset from MORB only slightly ( Sr/ Sr ~0.7034 vs 0.7028 for MORB). This is a puzzle because abundant sources of subducted Sr in sediment (GLOSS II Sr/ Sr = 0.712) and altered oceanic crust ( Sr/ Sr = 0.704-0.705) are more radiogenic than average arc basalts globally ( Sr/ Sr ~ 0.7034)...
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-23
    Description: Seismic reflection and refraction data from the SE Greenland margin provide a detailed view of a volcanic rifted margin from Archean continental crust to near-to-average oceanic crust over a spatial scale of 400 km. The SIGMA III transect, located ∼600 km south of the Greenland-Iceland Ridge and the presumed track of the Iceland hot spot, shows that the continent-ocean transition is abrupt and only a small amount of crustal thinning occurred prior to final breakup. Initially, 18.3 km thick crust accreted to the margin and the productivity decreased through time until a steady state ridge system was established that produced 8–10 km thick crust. Changes in the morphology of the basaltic extrusives provide evidence for vertical motions of the ridge system, which was close to sea level for at least 1 m.y. of subaerial spreading despite a reduction in productivity from 17 to 13.5 km thick crust over this time interval. This could be explained if a small component of active upwelling associated with thermal buoyancy from a modest thermal anomaly provided dynamic support to the rift system. The thermal anomaly must be exhaustible, consistent with recent suggestions that plume material was emplaced into a preexisting lithospheric thin spot as a thin sheet. Exhaustion of the thin sheet led to rapid subsidence of the spreading system and a change from subaerial, to shallow marine, and finally to deep marine extrusion in ∼2 m.y. is shown by the morphological changes. In addition, comparison to the conjugate Hatton Bank shows a clear asymmetry in the early accretion history of North Atlantic oceanic crust. Nearly double the volume of material was emplaced on the Greenland margin compared to Hatton Bank and may indicate east directed ridge migration during initial opening.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-29
    Description: Carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting...
    Keywords: Inaugural Articles
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-04-25
    Description: Discovery of seafloor volcanism west of Buldir Volcano, the westernmost emergent volcano in the Aleutian arc, demonstrates that surface expression of active Aleutian volcanism falls below sea level just west of 175·9°E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. Lavas dredged from newly discovered seafloor volcanoes up to 300 km west of Buldir have end-member geochemical characteristics that provide new insights into the role of subducted basalt as a source component in Aleutian magmas. Western Aleutian seafloor lavas define a highly calc-alkaline series with 50–70% SiO 2 . Most samples have Mg-numbers [Mg# = Mg/(Mg + Fe)] greater than 0·60, with higher MgO and lower FeO* compared with average Aleutian volcanic rocks at all silica contents. Common basalts and basaltic andesites in the series are primitive, with average Mg# values of 0·67 (±0·02, n = 99, 1SD), and have Sr concentrations (423 ± 29 ppm, n = 99) and La/Yb ratios (4·5 ± 0·4, n = 29) that are typical of island arc basaltic lavas. A smaller group of basaltic samples is more evolved and geochemically more enriched, with higher and more variable Sr and La/Yb (average Mg# = 0·61 ± 0·1, n = 31; Sr = 882 ± 333 ppm, n = 31; La/Yb = 9·1 ± 0·9, n = 16). None of the geochemically enriched basalts or basaltic andesites has low Y (〈15 ppm) or Yb (〈1·5 ppm), so none show the influence of residual or cumulate garnet. In contrast, most western seafloor andesites, dacites and rhyodacites have higher Sr (〉1000 ppm) and are adakitic, with strongly fractionated trace element patterns (Sr/Y = 50–350, La/Yb = 8–35, Dy/Yb = 2·0–3·5) with low relative abundances of Nb and Ta (La/Ta 〉 100), consistent with an enhanced role for residual or cumulate garnet + rutile. All western seafloor lavas have uniformly radiogenic Hf and Nd isotopes, with Nd = 9·1 ± 0·3 ( n = 31) and Hf = 14·5 ± 0·6 ( n = 27). Lead isotopes are variable and decrease with increasing SiO 2 from basalts with 206 Pb/ 204 Pb = 18·51 ± 0·05 ( n = 11) to dacites and rhyodacites with 206 Pb/ 204 Pb = 18·43 ± 0·04 ( n = 18). Western seafloor lavas form a steep trend in 207 Pb/ 204 Pb– 206 Pb/ 204 Pb space, and are collinear with lavas from emergent Aleutian volcanoes, which mostly have 206 Pb/ 204 Pb 〉 18·6 and 207 Pb/ 204 Pb 〉 15·52. High MgO and Mg# relative to silica, flat to decreasing abundances of incompatible elements, and decreasing Pb isotope ratios with increasing SiO 2 rule out an origin for the dacites and rhyodacites by fractional crystallization. The physical setting of some samples (erupted through Bering Sea oceanic lithosphere) rules out an origin for their garnet + rutile trace element signature by melting in the deep crust. Adakitic trace element patterns in the dacites and rhyodacites are therefore interpreted as the product of melting of mid-ocean ridge basalt (MORB) eclogite in the subducting oceanic crust. Western seafloor andesites, dacites and rhyodacites define a geochemical end-member that is isotopically like MORB, with strongly fractionated Ta/Hf, Ta/Nd, Ce/Pb, Yb/Nd and Sr/Y. This eclogite component appears to be present in lavas throughout the arc. Mass-balance modeling indicates that it may contribute 36–50% of the light rare earth elements and 18% of the Hf that is present in Aleutian volcanic rocks. Close juxtaposition of high-Mg# basalt, andesite and dacite implies widely variable temperatures in the western Aleutian mantle wedge. A conceptual model explaining this shows interaction of hydrous eclogite melts with mantle peridotite to produce buoyant diapirs of pyroxenite and pyroxenite melt. These diapirs reach the base of the crust and feed surface volcanism in the western Aleutians, but are diluted by extensive melting in a hotter mantle wedge in the eastern part of the arc.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...