GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hennige, Sebastian; Wicks, L C; Kamenos, N A; Bakker, Dorothee C E; Findlay, Helen S; Dumousseaud, Cynthia; Roberts, J Murray (2014): Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 99, 27-35, https://doi.org/10.1016/j.dsr2.2013.07.005
    Publication Date: 2024-03-15
    Description: Cold-water corals are amongst the most three-dimensionally complex deep-sea habitats known and are associated with high local biodiversity. Despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has already decreased from 8.2 to ~ 8.1. Predicted CO2 emissions will decrease this by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Data here relate to a short term data set (21 days) on metabolism and net calcification rates of freshly collected L. pertusa from Mingulay Reef Complex, Scotland. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Alkalinity anomaly technique (Smith and Key, 1975); Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate, standard error; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard error; Incubation duration; Laboratory experiment; Lophelia pertusa; Mingulayreef; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Polyp number; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard deviation; Respiration rate, oxygen, standard error; Salinity; Single species; Species; Temperate; Temperature, water; Tissue, dry mass; UKOA; United Kingdom Ocean Acidification research programme
    Type: Dataset
    Format: text/tab-separated-values, 1107 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, N A; Cusack, Maggie (2014): Ocean acidification alters the material properties of Mytilus edulis shells. Journal of The Royal Society Interface, 12(103), 20141227-20141227, https://doi.org/10.1098/rsif.2014.1227
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Coefficient of variation; Drift correction; Fracture toughness; Fracture toughness, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Hardness; Hardness, standard deviation; Identification; Laboratory experiment; Minerals; Mollusca; Mytilus edulis; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Oxygen; Oxygen, standard deviation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Position, length; Potentiometric titration; Salinity; Salinity, standard deviation; Sample code/label; Single species; Species; Table; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Test set; Treatment; Young's modulus; Youngs modulus, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 22000 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: Cold-water corals, such as Lophelia pertusa, are key habitat-forming organisms found throughout the world's oceans to 3000 m deep. The complex three-dimensional framework made by these vulnerable marine ecosystems support high biodiversity and commercially important species. Given their importance, a key question is how both the living and the dead framework will fare under projected climate change. Here, we demonstrate that over 12 months L. pertusa can physiologically acclimate to increased CO2, showing sustained net calcification. However, their new skeletal structure changes and exhibits decreased crystallographic and molecular-scale bonding organization. Although physiological acclimatization was evident, we also demonstrate that there is a negative correlation between increasing CO2 levels and breaking strength of exposed framework (approx. 20-30% weaker after 12 months), meaning the exposed bases of reefs will be less effective 'load-bearers', and will become more susceptible to bioerosion and mechanical damage by 2100.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Area; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Breaking load; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Diameter; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Full width at half maximum; Group; Growth/Morphology; Height; Height/width ratio; Identification; Incubation duration; Laboratory experiment; Lophelia pertusa; Mingulayreef; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Peak area; Peak centre; Peak height; Percentage; pH; pH, standard deviation; Potentiometric titration; Ratio; Registration number of species; Replicate; Respiration rate, oxygen; Salinity; Salinity, standard deviation; Sample ID; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Thickness; Treatment; Type; Uniform resource locator/link to reference; Width
    Type: Dataset
    Format: text/tab-separated-values, 9135 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, N A (2014): Ocean acidification reduces the crystallographic control in juvenile mussel shells. Journal of Structural Biology, 188(1), 39-45, https://doi.org/10.1016/j.jsb.2014.08.007
    Publication Date: 2024-03-15
    Description: Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000 µatm), following 6 months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000 µatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750 µatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Infrared spectrometric; Laboratory experiment; Mollusca; Mytilus edulis; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen, standard deviation; Oxygen saturation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric titration; Salinity; Salinity, standard deviation; Shell length; Shell length, standard deviation; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 196 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-15
    Description: Biomineral production in marine organisms employs transient phases of amorphous calcium carbonate (ACC) in the construction of crystalline shells. Increasing seawater pCO2 leads to ocean acidification (OA) with a reduction in oceanic carbonate concentration which could have a negative impact on shell formation and therefore survival. We demonstrate significant changes in the hydrated and dehydrated forms of ACC in the aragonite and calcite layers of Mytilus edulis shells cultured under acidification conditions (1000 µatm pCO2) compared to present day conditions (380 µatm pCO2). In OA conditions, Mytilus edulis has more ACC at crystalisation sites. Here, we use the high-spatial resolution of synchrotron X-ray Photo Emission Electron Microscopy (XPEEM) combined with X-ray Absorption Spectroscopy (XAS) to investigate the influence of OA on the ACC formation in the shells of adult Mytilus edulis. Electron Backscatter Diffraction (EBSD) confirms that OA reduces crystallographic control of shell formation. The results demonstrate that OA induces more ACC formation and less crystallographic control in mussels suggesting that ACC is used as a repair mechanism to combat shell damage under OA. However, the resultant reduced crystallographic control in mussels raises concerns for shell protective function under predation and changing environments.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Energy; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Intensity; Laboratory experiment; Mollusca; Mytilus edulis; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Oxygen saturation; Oxygen saturation, standard deviation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Registration number of species; Salinity; Salinity, standard deviation; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 24476 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-15
    Description: Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 µatm pCO2, and 750, 1000 µatm pCO2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 ?atm pCO2) compared to those shells grown under ambient conditions (380 ?atm pCO2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Laboratory experiment; Mollusca; Mytilus edulis; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen saturation; Oxygen saturation, standard deviation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric titration; Ratio; Registration number of species; Salinity; Salinity, standard deviation; Shell growth; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Thickness; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1680 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Burdett, H L; Perna, G; McKay, Lucy; Broomhead, Gemma; Kamenos, N A (2018): Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment. Marine Ecology Progress Series, 587, 73-80, https://doi.org/10.3354/meps12421
    Publication Date: 2024-03-15
    Description: The rate of change in ocean carbonate chemistry is a vital determinant in the magnitude of effects observed. Benthic marine ecosystems are facing an increasing risk of acute CO2 exposure that may be natural or anthropogenically derived (e.g. engineering and industrial activities). However, our understanding of how acute CO2 events impact marine life is restricted to individual organisms, with little understanding for how this manifests at the community level. Here, we investigated in situ the effect of acute CO2 enrichment on the coralline algal ecosystem—a globally ubiquitous, ecologically and economically important habitat, but one which is likely to be sensitive to CO2 enrichment due to its highly calcified reef-like structures engineered by coralline algae. Most notably, we observed a rapid community-level shift to favour net dissolution rather than net calcification. Smaller changes from net respiration to net photosynthesis were also observed. There was no effect on the net flux of DMS/DMSP (algal secondary metabolites), nor on the nutrients nitrate and phosphate. Following return to ambient CO2 levels, only a partial recovery was seen within the monitoring timeframe. This study highlights the sensitivity of biogenic carbonate marine communities to acute CO2 enrichment and raises concerns over the capacity for the system to 'bounce back' if subjected to repeated acute high-CO2 events.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Dimethyl sulfide + Dimethylsulfoniopropionate, flux; Entire community; Estuary; EXP; Experiment; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Irradiance; Loch_Sween; Nitrate, flux; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Oxygen, flux; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Phosphate, flux; Primary production/Photosynthesis; Respiration; Rocky-shore community; Salinity; Salinity, standard deviation; Temperate; Temperature, water; Temperature, water, standard deviation; Time point, descriptive; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 1226 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-15
    Description: To understand the effects of ocean acidification (OA) on marine calcifiers, the trade-offs among different sublethal responses within individual species and the emergent effects of these trade-offs must be determined in an ecosystem setting. Crustose coralline algae (CCA) provide a model to test the ecological consequences of such sublethal effects as they are important in ecosystem functioning, service provision, carbon cycling and use dissolved inorganic carbon to calcify and photosynthesize. Settlement tiles were placed in ambient pH, low pH and extremely low pH conditions for 14 months at a natural CO2 vent. The size, magnesium (Mg) content and molecular-scale skeletal disorder of CCA patches were assessed at 3.5, 6.5 and 14 months from tile deployment. Despite reductions in their abundance in low pH, the largest CCA from ambient and low pH zones were of similar sizes and had similar Mg content and skeletal disorder. This suggests that the most resilient CCA in low pH did not trade-off skeletal structure to maintain growth. CCA that settled in the extremely low pH, however, were significantly smaller and exhibited altered skeletal mineralogy (high Mg calcite to gypsum (hydrated calcium sulfate)), although at present it is unclear if these mineralogical changes offered any fitness benefits in extreme low pH. This field assessment of biological effects of OA provides endpoint information needed to generate an ecosystem relevant understanding of calcifying system persistence.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Area; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; CO2 vent; Coast and continental shelf; Entire community; Field observation; Frequency; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Full width at half maximum; Growth/Morphology; Mediterranean Sea; Month; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Rocky-shore community; Salinity; Salinity, standard deviation; Site; Temperate; Temperature, water; Temperature, water, standard deviation; Type; Zone
    Type: Dataset
    Format: text/tab-separated-values, 4663 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: Significant warming and acidification of the oceans is projected to occur by the end of the century. CO2 vents, areas of upwelling and downwelling, and potential leaks from carbon capture and storage facilities may also cause localised environmental changes, enhancing or depressing the effect of global climate change. Cold-water coral ecosystems are threatened by future changes in carbonate chemistry, yet our knowledge of the response of these corals to high temperature and high CO2 conditions is limited. Dimethylsulphoniopropionate (DMSP), and its breakdown product dimethylsulphide (DMS), are putative antioxidants that may be accumulated by invertebrates via their food or symbionts, although recent research suggests that some invertebrates may also be able to synthesise DMSP. This study provides the first information on the impact of high temperature (12 °C) and high CO2 (817 ppm) on intracellular DMSP in the cold-water coral Lophelia pertusa from the Mingulay Reef Complex, Scotland (56°49' N, 07°23' W), where in situ environmental conditions are meditated by tidally induced downwellings. An increase in intracellular DMSP under high CO2 conditions was observed, whilst water column particulate DMS + DMSP was reduced. In both high temperature treatments, intracellular DMSP was similar to the control treatment, whilst dissolved DMSP + DMS was not significantly different between any of the treatments. These results suggest that L. pertusa accumulates DMSP from the surrounding water column; uptake may be up-regulated under high CO2 conditions, but mediated by high temperature. These results provide new insight into the biotic control of deep-sea biogeochemistry and may impact our understanding of the global sulphur cycle, and the survival of cold-water corals under projected global change.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Aragonite saturation state, standard error; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Dimethyl sulfide + dimethylsulfoniopropionate; Dimethylsulfoniopropionate, intracellular; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Infrared spectrometric; Laboratory experiment; Lophelia pertusa; Mingulay_Reef; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Potentiometric titration; Salinity; Salinity, standard error; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard error; Time in days; Treatment; UKOA; United Kingdom Ocean Acidification research programme
    Type: Dataset
    Format: text/tab-separated-values, 1114 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fitzer, Susan C; Phoenix, Vernon R; Cusack, Maggie; Kamenos, N A (2014): Ocean acidification impacts mussel control on biomineralisation. Scientific Reports, 4, 6218, https://doi.org/10.1038/srep06218
    Publication Date: 2024-03-15
    Description: Ocean acidification is altering the oceanic carbonate saturation state and threatening the survival of marine calcifying organisms. Production of their calcium carbonate exoskeletons is dependent not only on the environmental seawater carbonate chemistry but also the ability to produce biominerals through proteins. We present shell growth and structural responses by the economically important marine calcifier Mytilus edulis to ocean acidification scenarios (380, 550, 750, 1000 µatm pCO2). After six months of incubation at 750 µatm pCO2, reduced carbonic anhydrase protein activity and shell growth occurs in M. edulis. Beyond that, at 1000 µatm pCO2, biomineralisation continued but with compensated metabolism of proteins and increased calcite growth. Mussel growth occurs at a cost to the structural integrity of the shell due to structural disorientation of calcite crystals. This loss of structural integrity could impact mussel shell strength and reduce protection from predators and changing environments.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbonic anhydrase activity; Carbonic anhydrase activity, per tissue weight; Coast and continental shelf; Date; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Image number/name; Laboratory experiment; Mollusca; Mytilus edulis; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Oxygen, standard deviation; Oxygen saturation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric titration; Salinity; Salinity, standard deviation; Sample ID; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Wet mass
    Type: Dataset
    Format: text/tab-separated-values, 2516 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...