GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-29
    Description: Hydrothermal vent systems host microbial communities among which several microorganisms have been considered endemic to this type of habitat. It is still unclear how these organisms colonize geographically distant hydrothermal environments. Based on 16S rRNA gene sequences, we compare the bacterial communities of sixteen Atlantic hydrothermal vent samples with our own and publicly available global open ocean samples. Analysing sequences obtained from 63 million 16S rRNA genes, the genera we could identify in the open ocean waters contained 99.9% of the vent reads. This suggests that previously observed vent exclusiveness is, in most cases, probably an artefact of lower sequencing depth. These findings are a further step towards elucidating the role of the open ocean as a seed bank. They can explain the predicament of how species expected to be endemic to vent systems are able to colonize geographically distant hydrothermal habitats and contribute to our understanding of whether ‘everything is really everywhere’.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-29
    Description: The microbial community composition and its functionality was assessed for hydrothermal fluids and volcanic ash sediments from Haungaroa and hydrothermal fluids from the Brothers volcano in the Kermadec island arc (New Zealand). The Haungaroa volcanic ash sediments were dominated by epsilonproteobacterial Sulfurovum sp. Ratios of electron donor consumption to CO2 fixation from respective sediment incubations indicated that sulfide oxidation appeared to fuel autotrophic CO2 fixation, coinciding with thermodynamic estimates predicting sulfide oxidation as the major energy source in the environment. Transcript analyses with the sulfide-supplemented sediment slurries demonstrated that Sulfurovum prevailed in the experiments as well. Hence, our sediment incubations appeared to simulate environmental conditions well suggesting that sulfide oxidation catalyzed by Sulfurovum members drive biomass synthesis in the volcanic ash sediments. For the Haungaroa fluids no inorganic electron donor and responsible microorganisms could be identified that clearly stimulated autotrophic CO2 fixation. In the Brothers hydrothermal fluids Sulfurimonas (49%) and Hydrogenovibrio/Thiomicrospira (15%) species prevailed. Respective fluid incubations exhibited highest autotrophic CO2 fixation if supplemented with iron(II) or hydrogen. Likewise catabolic energy calculations predicted primarily iron(II) but also hydrogen oxidation as major energy sources in the natural fluids. According to transcript analyses with material from the incubation experiments Thiomicrospira/Hydrogenovibrio species dominated, outcompeting Sulfurimonas. Given that experimental conditions likely only simulated environmental conditions that cause Thiomicrospira/Hydrogenovibrio but not Sulfurimonas to thrive, it remains unclear which environmental parameters determine Sulfurimonas’ dominance in the Brothers natural hydrothermal fluids.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Microbial metabolisms in sediments play a pivotal role in marine element cycling. In hydrothermal sediments chemosynthetic microorganisms likely prevail, while in non-hydrothermally impacted sediment regimes microorganisms associated with organic matter decomposition are primarily recognized. To test how these microorganisms are distributed along the hitherto neglected transition zone influenced to different degrees by hydrothermal input we sampled four sediment sites: these were (i) near an active vent, (ii) the outer rim, and (iii) the inactive area of the Kairei hydrothermal field as well as (iv) sediments roughly 200 km south-east of the Kairei field. Chemistry and microbial community compositions were different at all sampling sites. Against expectations, the sediments near the active vent did not host typical chemosynthetic microorganisms and chemistry did not indicate current, extensive hydrothermal venting. Data from the outer rim area of the active Kairei field suggested microbially mediated saponite production and diffuse hydrothermal flow from below accompanied by increased metal concentrations. A steep redox gradient in the inactive Kairei field points towards significant redox driven processes resulting in dissolution of hydrothermal precipitates and intense metal mobilization. Local microorganisms were primarily Chloroflexi, Bacillales, Thermoplasmata, and Thaumarchaeota.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Anthropogenic activities are modifying the oceanic environment rapidly and are causing ocean warming and deoxygenation, affecting biodiversity, productivity, and biogeochemical cycling. In coastal sediments, anaerobic organic matter degradation essentially fuels the production of hydrogen sulfide and methane. The release of these compounds from sediments is detrimental for the (local) environment and entails socio-economic consequences. Therefore, it is vital to understand which microbes catalyze the re-oxidation of these compounds under environmental dynamics, thereby mitigating their release to the water column. Here we use the seasonally dynamic Boknis Eck study site (SW Baltic Sea), where bottom waters annually fall hypoxic or anoxic after the summer months, to extrapolate how the microbial community and its activity reflects rising temperatures and deoxygenation. During October 2018, hallmarked by warmer bottom water and following a hypoxic event, modeled sulfide and methane production and consumption rates are higher than in March at lower temperatures and under fully oxic bottom water conditions. The microbial populations catalyzing sulfide and methane metabolisms are found in shallower sediment zones in October 2018 than in March 2019. DNA-and RNA profiling of sediments indicate a shift from primarily organotrophic to (autotrophic) sulfide oxidizing Bacteria, respectively. Previous studies using data collected over decades demonstrate rising temperatures, decreasing eutrophication, lower primary production and thus less fresh organic matter transported to the Boknis Eck sediments. Elevated temperatures are known to stimulate methanogenesis, anaerobic oxidation of methane, sulfate reduction and essentially microbial sulfide consumption, likely explaining the shift to a phylogenetically more diverse sulfide oxidizing community based on RNA.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Iron (Fe) is an essential trace element for life. In the ocean, Fe can be exceptionally scarce and thus biolimiting or extremely enriched causing microbial stress. The ability of hydrothermal plume microbes to counteract unfavorable Fe-concentrations up to 10 mM is investigated through experiments. While Campylobacterota (Sulfurimonas) are prominent in a diverse community at low to intermediate Fe-concentrations, the highest 10 mM Fe-level is phylogenetically less diverse and dominated by the SUP05 clade (Gammaproteobacteria), a species known to be genetically well equipped to strive in high-Fe environments. In all incubations, Fe-binding ligands were produced in excess of the corresponding Fe-concentration level, possibly facilitating biological Fe-uptake in low-Fe incubations and detoxification in high-Fe incubations. The diversity of Fe-containing formulae among dissolved organics (SPE-DOM) decreased with increasing Fe-concentration, which may reflect toxic conditions of the high-Fe treatments. A DOM-derived degradation index (IDEG) points to a degradation magnitude (microbial activity) that decreases with Fe and/or selective Fe-DOM coagulation. Our results show that some hydrothermal microbes (especially Gammaproteobacteria) have the capacity to thrive even at unfavorably high Fe-concentrations. These ligand-producing microbes could hence play a key role in keeping Fe in solution, particularly in environments, where Fe precipitation dominates and toxic conditions prevail.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-20
    Description: In order to expand the knowledge of microbial ecosystems from deep-sea hydrothermal vent systems located on the Central and South-East Indian Ridge, we sampled hydrothermal fluids, massive sulfides, ambient water and sediments of six distinct vent fields. Most of these vent sites were only recently discovered in the course of the German exploration program for massive sulfide deposits and no previous studies of the respective microbial communities exist. Apart from typically vent-associated chemosynthetic members of the orders Campylobacterales , Mariprofundales , and Thiomicrospirales , high numbers of uncultured and unspecified Bacteria were identified via 16S rRNA gene analyses in hydrothermal fluid and massive sulfide samples. The sampled sediments however, were characterized by an overall lack of chemosynthetic Bacteria and the presence of high proportions of low abundant bacterial groups. The archaeal communities were generally less diverse and mostly dominated by members of Nitrosopumilales and Woesearchaeales , partly exhibiting high proportions of unassigned Archaea. Correlations with environmental parameters were primarily observed for sediment communities and for microbial species (associated with the nitrogen cycle) in samples from a recently identified vent field, which was geochemically distinct from all other sampled sites. Enrichment cultures of diffuse fluids demonstrated a great potential for hydrogen oxidation coupled to the reduction of various electron-acceptors with high abundances of Hydrogenovibrio and Sulfurimonas species. Overall, given the large number of currently uncultured and unspecified microorganisms identified in the vent communities, their respective metabolic traits, ecosystem functions and mediated biogeochemical processes have still to be resolved for estimating consequences of potential environmental disturbances by future mining activities.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-04-24
    Description: Deep-sea sediment samples were taken from the (wider) Kairei hydrothermal field area (25°S, 70°E) as well as a remote site (26°S, 71°E) in the Indian Ocean during the INDEX cruise 2016 with the N/O Pourquoi pas? (Ifremer, France). Push core samples from different areas of the Kairei vent field, as well as a sample from the remote site (~200 km south-east from the Kairei), were recovered with the help of the ROV VICTOR 6000 (Ifremer, France). All subsampling steps were carried out shipboard at 4 °C. With sterile syringes (nozzles removed) 3 ml of 2 cm layers of sediment were transferred into sterile falcon tubes for DNA extraction and stored at –80 °C. The remaining sediment was cut into 2 cm slices, freeze-dried, and partially milled to 〈75 mm for geochemical analyses. The sediment was analyzed for carbon chemistry, i.e. total organic carbon (TOC) and total inorganic carbon (TIC) with routine standard methods (IR-detection after combustion, ISO 10694, LECO CS 230 analyzer). Elemental composition of Kairei sediments was estimated by the accredited Actlab Laboratories, Canada (Multimethod mix called Ultratrace 3 program, using INAA, 4-Acid Digestion, ICP-OES, and ICP-MS). Sediments from the remote station were analyzed by routine WD-XRF after fusion with Li-Metaborate/Li-Bromide (XRF spectrometers Philips PW 2400 und Philips PW 1480).
    Keywords: 16S rRNA gene tags; Aluminium oxide; Area/locality; Calcium oxide; Carbon, carbonate; Carbon, organic; Carbon, total; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Element Analyser CS, LECO CS 230; Event label; geochemistry of porewaters; hydrothermal vent; INDEX2016; INDEX2016_12ROV; INDEX2016_20ROV; Indian Ocean; Iron oxide, Fe2O3; Kairei field; Magnesium oxide; Manganese oxide; metalliferous sediments; Phosphorus pentoxide; Potassium oxide; Pourquoi Pas ? (2005); Sample code/label; Silicon dioxide; Sodium oxide; Sulfur, total; Titanium dioxide; VICTOR; Victor6000 ROV
    Type: Dataset
    Format: text/tab-separated-values, 628 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-03-02
    Description: Deep-sea sediment samples were taken from the (wider) Kairei hydrothermal field area (25°S, 70°E) as well as a remote site (26°S, 71°E) in the Indian Ocean during the INDEX cruise 2016 with the N/O Pourquoi pas? (Ifremer, France). Push core samples from different areas of the Kairei vent field, as well as a sample from the remote site (~200 km south-east from the Kairei), were recovered with the help of the ROV VICTOR 6000 (Ifremer, France). All subsampling steps were carried out shipboard at 4 °C. Porewater from push cores was extracted with rhizons (CSS, 5 cm Rhizosphere Research Products B.V., Netherlands) at a resolution of 2-3 cm, fixed with 1% HNO3 for trace element analyses and stored at 4 °C. With sterile syringes (nozzles removed) 3 ml of 2 cm layers of sediment were transferred into sterile falcon tubes for DNA extraction and stored at –80 °C. Concentrations of minor and trace elements Li, Al, Rb, Cs, Sr, Ba, V, Mn, Fe, Co, Ni, Cu, Zn, Ag, Cd, Tl, Pb, In, Sn, Sb, Bi, W, Mo, U, Au, As, and L were determined by highresolution ICP-SF-MS (Element XR, Thermo Scientific) after 25-fold dilution and spiking with Y and Re for internal standardization using appropriate mass resolution settings.
    Keywords: 16S rRNA gene tags; Aluminium; Antimony; Area/locality; Arsenic; Barium; Cadmium; Caesium; Cerium; Cobalt; Copper; DEPTH, sediment/rock; Europium; Event label; geochemistry of porewaters; hydrothermal vent; ICP-OES; ICP-SF-MS, Thermo Scientific, Element XR; INDEX2016; INDEX2016_12ROV; INDEX2016_20ROV; Indian Ocean; Ion chromatography; Iron; Kairei field; Lanthanum; Lead; Manganese; metalliferous sediments; Molybdenum; Neodymium; Nickel; Nitrate; Pourquoi Pas ? (2005); Praseodymium; Samarium; Sample code/label; Silica, dissolved; Silver; Thallium; Tin; Tungsten; Uranium; Vanadium; VICTOR; Victor6000 ROV; Zinc
    Type: Dataset
    Format: text/tab-separated-values, 942 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...