GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    ISSN: 1573-5117
    Keywords: calcification ; carbon metabolism ; diatom ; Emiliania huxleyi ; size
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Changes in the species composition, photosynthesis, calcification and size-fractionated carbon metabolism by natural phytoplankton assemblages were monitored in three mesocosms under different nutrient conditions during May 1993. In the 3 enclosures, the decline of the diatom-dominated assemblages was followed by the development of a bloom of the coccolithoporid Emiliania huxleyi. Highest growth of E. huxleyi was observed in the mesocosm with a high N : P ratio, suggesting this species is a good competitor at low phosphate concentrations. The transition from diatom- to E. huxleyi-dominated assemblages brought about a sharp reduction of the phytoplankton standing stock and carbon-specific photosynthetic rate. The relative contribution of the smaller size fraction to total photosynthesis increased as the succession progressed. Calcification rate and E. huxleyi cell-specified calcite production were highest during the early stages of development of the E. huxleyi bloom. Distinct changes in the patterns of 14C allocation into biomolecules were noticed during the diatom-E. huxleyi succession. The diatom-dominated assemblage showed high relative 14C incorporation into low molecular weight metabolites (LMWM), whereas proteins and, specially, lipids accounted for the largest proportion of carbon incorporation in the E. huxleyi bloom. The patterns of photoassimilated carbon metabolism proved to be strongly dependent on cellular size, as protein relative synthesis was significantly higher in the smaller than in the larger size fraction, irrespective of the nutrient regime and the successional stage. These results are discussed in relation to the ecological and physiological features of small phytoplankton.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...