GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Stadtentwässerung ; Niederschlagsmenge
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (168 Seiten, 9,82 MB) , Illustration, Diagramme, Karten
    Language: German
    Note: Förderkennzeichen BMBF 033W002A-G. - Verbund-Nummer 01134545 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-21
    Description: Pluvial floods in urban areas are caused by local, fast storm events with very high rainfall rates, which lead to inundation of streets and buildings before the storm water reaches a watercourse. An increase in frequency and intensity of heavy rainfall events and an ongoing urbanization may further increase the risk of pluvial flooding in many urban areas. Currently, warnings for pluvial floods are mostly limited to information on rainfall intensities and durations over larger areas, which is often not detailed enough to effectively protect people and goods. We present a proof‐of‐concept for an impact‐based forecasting system for pluvial floods. Using a model chain consisting of a rainfall forecast, an inundation, a contaminant transport and a damage model, we are able to provide predictions for the expected rainfall, the inundated areas, spreading of potential contamination and the expected damage to residential buildings. We use a neural network‐based inundation model, which significantly reduces the computation time of the model chain. To demonstrate the feasibility, we perform a hindcast of a recent pluvial flood event in an urban area in Germany. The required spatio‐temporal accuracy of rainfall forecasts is still a major challenge, but our results show that reliable impact‐based warnings can be forecasts are available up to 5 min before the peak of an extreme rainfall event. Based on our results, we discuss how the outputs of the impact‐based forecast could be used to disseminate impact‐based early warnings.
    Description: Plain Language Summary: Pluvial floods are caused by local rain storms with extreme rainfall rates, which leads to immediate flooding of streets and buildings in urban areas. These events are expected to increase in the future due to climate change and growing urban areas. Pluvial floods are directly caused by a rainstorm, which gives citizens and emergency responders usually only a few minutes to act. Existing forecasting systems for pluvial floods are limited to rainfall forecasts that neither provide information about where a flood might occur nor how severe the impacts will be. Here, the main challenge is that current computer models that predict inundation take too long to run to release flood forecasts early enough. We present a new inundation model that can predict inundation for an upcoming flood event in a fraction of the time of existing models. We combine this model with models that predict the spreading of contamination (e.g., from a car accident) and the damage to residential buildings. For a real flood event we can show that this information can be released up to 5 min before the rainfall peak, which gives citizens and emergency responders the opportunities to safe lives and protect important valuables.
    Description: Key Points: First impact‐based forecasting for pluvial foods. Artificial neural network inundation model significantly cuts calculation time to 0.1% of a physically based model with comparable accuracy. Forecast with estimates for inundated areas, spreading of contaminants and expected damage could be released 5 min before peak rainfall.
    Description: Bundesministerium für Bildung und Forschung (BMBF)
    Description: Z Zurich Foundation
    Description: Grantham Foundation for the Protection of the Environment
    Description: ESRC Centre for Climate Change Economics and Policy: ES/R009708/1
    Keywords: 551.489 ; early warning ; impact‐based forecasting ; pluvial floods
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3First Status Seminar, Research Cluster Climate Impact on Lower Saxony, Germany (KLIFF), Göttingen, Germany, May 2010.
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: For derived flood frequency analysis based on hydrological modelling long continuous precipitation time series with high temporal resolution are needed. Often, the observation network with recording rainfall gauges is poor, especially regarding the limited length of the available rainfall time series. Stochastic precipitation synthesis is a good alternative either to extend or to regionalise rainfall series to provide adequate input for long-term rainfall-runoff modelling with subsequent estimation of design floods. Here, a new two step procedure for stochastic synthesis of continuous hourly space-time rainfall is proposed and tested for the extension of short observed precipitation time series. First, a single-site alternating renewal model is presented to simulate independent hourly precipitation time series for several locations. The alternating renewal model describes wet spell durations, dry spell durations and wet spell intensities using univariate frequency distributions separately for two seasons. The dependence between wet spell intensity and duration is accounted for by 2-copulas. For disaggregation of the wet spells into hourly intensities a predefined profile is used. In the second step a multi-site resampling procedure is applied on the synthetic point rainfall event series to reproduce the spatial dependence structure of rainfall. Resampling is carried out successively on all synthetic event series using simulated annealing with an objective function considering three bivariate spatial rainfall characteristics. In a case study synthetic precipitation is generated for some locations with short observation records in two mesoscale catchments of the Bode river basin located in northern Germany. The synthetic rainfall data are then applied for derived flood frequency analysis using the hydrological model HEC-HMS. The results show good performance in reproducing average and extreme rainfall characteristics as well as in reproducing observed flood frequencies. The presented model has the potential to be used for ungauged locations through regionalisation of the model parameters.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Flood Risk Assessment and Management
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Forum für Hydrologie und Wasserbewirtschaftung | Einfluss von Bewirtschaftung und Klima auf Wasser- und Stoffhaushalt von Gewässern : Beiträge zum Tag der Hydrologie 2007 ; 22./23. März 2007 an der Universität Rostock
    Publication Date: 2020-02-12
    Language: German
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Language: German
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Forum für Hydrologie - Heft 15 - Risikomanagement extremer hydrologischer Ereignisse - Beiträge zum Tag der Hydrologie 2006 am 22./23. März 2006 in München - Band 1+2: Vorträge
    Publication Date: 2020-02-12
    Language: German
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: A wide variety of processes controls the time of occurrence, duration, extent, and severity of river floods. Classifying flood events by their causative processes may assist in enhancing the accuracy of local and regional flood frequency estimates and support the detection and interpretation of any changes in flood occurrence and magnitudes. This paper provides a critical review of existing causative classifications of instrumental and preinstrumental series of flood events, discusses their validity and applications, and identifies opportunities for moving toward more comprehensive approaches. So far no unified definition of causative mechanisms of flood events exists. Existing frameworks for classification of instrumental and preinstrumental series of flood events adopt different perspectives: hydroclimatic (large‐scale circulation patterns and atmospheric state at the time of the event), hydrological (catchment scale precipitation patterns and antecedent catchment state), and hydrograph‐based (indirectly considering generating mechanisms through their effects on hydrograph characteristics). All of these approaches intend to capture the flood generating mechanisms and are useful for characterizing the flood processes at various spatial and temporal scales. However, uncertainty analyses with respect to indicators, classification methods, and data to assess the robustness of the classification are rarely performed which limits the transferability across different geographic regions. It is argued that more rigorous testing is needed. There are opportunities for extending classification methods to include indicators of space–time dynamics of rainfall, antecedent wetness, and routing effects, which will make the classification schemes even more useful for understanding and estimating floods.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...