GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 8 (1985), S. 233-261 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 14 (1991), S. 169-199 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 9 (1997), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Presynaptic modulation of sensory afferent transmission during rhythmic motor activity was investigated in the lamprey spinal cord in vitro. Intracellular recordings were performed from the somata and axons of the glutamatergic sensory neurons from the skin (dorsal cells) during locomotor activity induced by N-methyl-D-aspartate (NMDA). Dorsal cells were phasically depolarized during each ipsilateral ventral root burst. In some soma recordings no or only small amplitude depolarizations were seen, although intracellular recording of their axons revealed the existence of large depolarizations, suggesting that the input synapses are located on the axons. The amplitude of the depolarizations increased during intracellular injection of hyperpolarizing current. The amplitude of the depolarizations increased when the frequency of the locomotor rhythm was increased by elevating the NMDA concentration. The depolarizations were not blocked by specific GABAA (bicuculline) or GABAB (phaclofen and saclofen) antagonists. To investigate whether the phasic depolarization may influence the monosynaptic excitatory transmission to giant interneurons, the amplitude of the monosynaptic excitatory postsynaptic potential (EPSP) was compared between the onset of the ipsilateral locomotor burst and the burst mid-point. The compound monosynaptic EPSP evoked from dorsal column was significantly smaller during the peak depolarization than at burst onset. The reduction of the amplitude of the EPSPs was not associated with any change of the membrane potential or input resistance of the giant interneurons, suggesting that this effect is mediated by a presynaptic mechanism. Phase-dependent effects were also seen on burst and cycle duration following dorsal column stimulation. Thus, the locomotor-related depolarizations in dorsal cell axons may represent a mechanism for a phasic gain control of sensory transmission during fictive locomotion.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 10 (1998), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The effect of metabotropic glutamate receptor (mGluR) agonists and antagonists on the spinal cord network underlying locomotion in the lamprey has been analysed. The specific group I mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) and the broad-spectrum mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) both increased the burst frequency of N-methyl-d-aspartic acid (NMDA)-induced fictive locomotion and depolarized grey matter neurons. The burst frequency increase induced by the mGluR agonists was counteracted by the mGluR antagonists (+)-alpha-methyl-4-carboxyphenylglycine((+)-MCPG), cyclopropan[b]chromen-1a-carboxylic acid ethylester (CPCCOEt) and (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA). Application of CPCCOEt alone reduced the locomotor burst frequency, indicating that mGluRs are endogenously activated during fictive locomotion. The mGluR antagonist CPCCOEt had no effect on NMDA-, or (S)-α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA)-induced depolarizations. The mGluR agonists 1S,3R-ACPD and DHPG increased the amplitude of NMDA-induced depolarizations, a mechanism which could account for the increase in burst frequency. The group III mGluR agonist L-2-amino-4-phosphonobutyric acid reduced intraspinal synaptic transmission and burst frequency.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 8 (1996), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The lamprey normally swims with the dorsal side up. Illumination of one eye shifts the set-point of the vestibular roll control system, however, so that the animal swims with a roll tilt towards the source of light (the dorsal light response). A tilted orientation is often maintained for up to 1 min after the stimulation. In the present study, the basis for this behaviour was investigated at the neuronal level. The middle rhombencephalic reticular nucleus (MRRN) is considered a main nucleus for the control of roll orientation in lampreys. Practically all MRRN neurons receive vestibular and visual input and project to the spinal cord. Earlier extracellular experiments had shown that optic nerve stimulation potentiates the response to vestibular stimulation in the ipsilateral MRRN. This most likely represents a neural correlate of the dorsal light response. Experiments were carried out in vitro on the isolated brainstem of the silver lamprey (Ichthyomyzon unicuspis). MRRN cells were recorded intracellularly, and the overall activity of descending systems was monitored with bilateral extracellular electrodes. The responses to 10 Hz optic nerve stimulation and 1 Hz vestibular nerve stimulation, and the influence of optic nerve stimulation on the vestibular responses, were investigated. In most preparations, optic nerve stimulation excited practically all ipsilateral MRRN cells. After stimulation, the cell was typically depolarized and showed an increased level of synaptic noise for up to 80 s. In contralateral MRRN neurons, optic nerve stimulation usually evoked hyperpolarization or no response. Vestibular nerve stimulation evoked compound excitatory postsynaptic potentials (EPSPs) or spikes in -90% of the cells, both ipsilaterally and contralaterally. A smaller subpopulation of MRRN cells (-10%) received vestibular inhibition. In 26 of 48 recorded MRRN cells, the response to vestibular stimulation was potentiated after ipsilateral optic nerve stimulation. The potentiation was seen in cells receiving either excitatory or inhibitory vestibular input as an increase in EPSP amplitudelspiking (85%) and a decrease in inhibitory postsynaptic potential amplitude (15%) respectively. In most cases the vestibular responses did not return to control levels during the testing period (10–30 min), and thus the visual stimulation most likely induced long-lasting changes in the functional connectivity of the roll control network, in addition to the short-lasting afteractivity. In four of the 11 cells recorded contralateral to the stimulated optic nerve, a depression of the vestibular response could be seen. In potentiated cells, single vestibular pulses often evoked longer episodes of large synaptic noise and sometimes spiking. In the latter case, the action potentials appeared with highly variable latency after each stimulation pulse. This indicates that an important mechanism underlying the potentiation may be a long-lasting increase in excitability in a pool of unidentified interneurons located either upstream of the MRRN cells, relaying vestibular and visual inputs, or downstream, providing positive feedback.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0196-9781
    Keywords: Brain ; Eledoisin ; Kassinin ; Lamprey ; Neurokinin A ; Physalaemin ; Spinal cord ; Substance P ; Tachykinins
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 22 (1966), S. 691-691 
    ISSN: 1420-9071
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Zusammenfassung Während Reizung des caudalen Hirnstammes wurden durch intrazelluläre Ableitung mit Mikroelektroden monosynaptische EPSPs in lumbosakralen γ-Motoneuronen registriert.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR — We have read with great interest the recommendations of F. Gros, G. P. Tocchini-Valentini and their committee of molecular biologists on priorities for the support of scientific research and technological development by the European Union (Nature 369, 11-12; 1994). ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 22 (1966), S. 390-390 
    ISSN: 1420-9071
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Zusammenfassung Erregung eines dorsomedialen Stammhirngebietes verursacht ein monosynaptisches EPSP in Motoneuronen der Beugemuskeln.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 24 (1968), S. 146-147 
    ISSN: 1420-9071
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Résumé Nous avons enregistré, dans les nerfs de muscles fléchisseurs, l'activité de neuronesγ uniques, identifiés comme dynamiques ou statiques par leur comportement sous l'effet d'une injection i.v. de DOPA3,4. La stimulation du cordon antérolatéral ipsilatéral de la moelle, au niveau thoracique, a invariablement activé les neuronesγ statiques. Dans 10 cas sur 15, la latence a été brève, indiquant une connexion monosynaptique. Par contre, les neuronesγ dynamiques n'ont pas présenté d'activation dans ces conditions. Ces résultats permettent d'identifier à des neuronesγ statiques la fraction de neuronesγ recevant une connexion monosynaptique à partir de la région bulbaire1.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...