GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Constraints on the structure of rifted continental margins and the magmatism resulting from such rifting can help refine our understanding of the strength of the lithosphere, the state of the underlying mantle and the transition from rifting to seafloor spreading. An important structural ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Neumann, Florian; Negrete-Aranda, Raquel; Harris, Robert N; Contreras, Juan; Sclater, John G; González-Fernández, Antonio (2017): Systematic heat flow measurements across the Wagner Basin, northern Gulf of California. Earth and Planetary Science Letters, 479, 340-353, https://doi.org/10.1016/j.epsl.2017.09.037
    Publication Date: 2023-01-13
    Description: A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. The heat flow profile is 40 km long, has a nominal measurement spacing of ∼1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Although heat flow data were collected in shallow water, where there are significant temporal variations in bottom water temperature, we use CTD data collected over many years to correct our measurements to yield accurate values of heat flow. After correction for bottom water temperature, the mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220 ±60, 99 ±14, 889 ±419mWm−2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Moreover, heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.
    Keywords: advective heat transport; Bottom water temperature; Bottom water temperature, error; Calculated; continental rupture; CTD; DATE/TIME; DEPTH, water; distributed deformation; Event label; Gulf of California; Gulf of California extensional province; Heat flow; Heat flow, standard deviation; Heat-Flow probe; HF; HF003P01; HF004P01; HF004P03; HF004P04; HF005P04; HF005P06; HF005P07; HF005P08; HF005P09; HF005P10; HF005P11; HF005P12; HF006P01; HF006P02; HF006P03; HF006P04; HF006P05; HF006P06; HF006P07; HF006P08; HF007P01; HF007P02; HF007P03; HF007P04; HF007P05; HF008P010; HF008P013; HF010P03; narrow rift; Temperature, difference; Temperature, standard deviation; Violin-bow probe (Multipenetration Heat Flow Probe)
    Type: Dataset
    Format: text/tab-separated-values, 196 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-24
    Description: In this work, we report new chemical and isotopic data (3He/4He, δ13CCO2, δ13CCH4, and δDCH4) from poorly or previously unstudied hydrothermal and magmatic gases that are emitted along the eastern coast of the Baja California Peninsula (BCP). High 3He/4He values (up to ~7 Ra) characterize the magmatic gases, while lower ratios (≤1.6 Ra) characterize hydrothermal springs. We infer that the mantle beneath the BCP could be Mid‐ocean‐ridge basalt (MORB)‐likes, as in the rift within the Gulf of California, or it may reflect contamination from C‐rich sediment during paleo‐subduction of the Farallon plate. During their ascent, through the crust, mantle/magmatic gases mix with CO2‐ and 4He‐rich fluids, thus forming CO2‐rich hydrothermal gases. These hydrothermal gases undergo partial dissolution of CO2 in shallow waters under different temperature and pH conditions, which further modifies their composition. Thermogenic and possibly abiogenic sources of methane are present only in magmatic gases from the BCP. Secondary methane oxidation (microbial/inorganic) processes are proposed for some hydrothermal gases, which are extremely enriched in heavy isotopes. Finally, we argue that the hydrothermal gases that are emitted from the BCP have variable percentages of mantle contribution, indicating the presence of lithospheric faults enhancing the rise of mantle fluids also in areas where volcanism is absent.
    Description: Published
    Description: 1912-1936
    Description: 2T. Deformazione crostale attiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-07
    Description: The Wagner Basin (WB) is a shallow basin (depth 〈 225 m) belonging to the northernmost section of the Gulf of California rift system. Hydrothermal activity and high heat fluxes prevail in some regions of the WB. For this contribution, we report the first dataset of chemical (major and some trace elements) and isotopic compositions (δ18O, δD, 87Sr/86Sr, δ13C) from pore water sampled at the bottom of the WB, in areas affected by hydrothermal activity. The goals of the study are to determine the origin of the fluids emanating from the anomalous heat flow zones and to characterize the physical and chemical processes controlling their composition. The 18 pore water samples are classified into two groups: low temperature (LT) and high temperature (HT) samples, according to the sampling temperature (from 16.4 to 25.6 °C, and 32.5–99.6 °C, respectively). LT samples have chemical and isotopic (δ18O and δD) compositions similar to those of present-day seawater. On the opposite, HT cores are typically more enriched in Cl (26,100–37,074 mg L−1) and other elements (Br, Na, K, Ca, B and Sr) than those of present-day seawater (Cl = 20,284 mg L−1). HT samples are also strongly depleted in deuterium isotopes (up to −30.48‰). This characteristic could be related to the mixing between ancient evaporated seawater and Colorado river waters. Conceptually, the origin of a saline paleo-aquifer/reservoir can be related with the gradual marine flooding of shallow lagoons and depressions at the time Gulf of California was rifting (6–8 Ma) or during the Last Glacial Maximum (20–26 Ky). Additionally, it is not ruled out that some of the deuterium depletion observed in HT samples may be related to secondary processes (e.g., clays exchange, organic matter). Radiogenic 87Sr/86Sr signatures (0.70929–0.70997) of the HT samples likely reflect the leaching of radiogenic continental sediments from the Colorado River (filling the WB) and authigenic minerals (e.g., calcite or barite) precipitated from seawater. Solute geothermometry indicates that HT pore fluids underwent water-rock interactions at temperature of at least 220 °C. Finally high δ13C values (up to +10.5‰) in DIC from HT samples indicates partial equilibration of methane with DIC, or partial reduction of DIC.
    Description: Published
    Description: id 104467
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Nature Publishing Group, 2007. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 448 (2007): 466-469, doi:10.1038/nature06035.
    Description: The rifting of continental lithosphere is a fundamental solid-earth process that leads to the formation of rifted continental margins and ocean basins. Understanding of this process comes from observations of the geometry of rifted margins and the magmatism resulting from rifting, which inform us about the strength of the lithosphere, the state of the underlying mantle, and the transition from rifting to seafloor spreading. Here we describe results from the PESCADOR seismic experiment in the southern Gulf of California and present the first crustal-scale images across conjugate margins of multiple segments within a single rift that has reached the stage of oceanic spreading. A surprisingly large variation in rifting style and magmatism is observed between these segments, from wide rifting with minor syn-rift magmatism to narrow rifting in magmatically robust segments. These differences encompass much of the variation observed across nearly all other non-end-member continental margins. The characteristics of magmatic endmember margins are typically explained in terms of mantle temperature. Our explanations for the variation in the Gulf of California, in contrast, invoke mantle depletion to account for wide, magma-poor rifting and mantle fertility and possibly the influence of sediments to account for robust rift and post-rift magmatism in the Gulf of California. These factors may vary laterally over small distances in regions that have transitioned from convergence to extension, as is the case for the Gulf of California and many other rifts.
    Description: This work was funded by a grant from the U.S. NSF-MARGINS program.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L09307, doi:10.1029/2011GL050828.
    Description: Subduction of the Farallon plate beneath northwestern Mexico stalled by ~12 Ma when the Pacific-Farallon spreading-ridge approached the subduction zone. Coupling between remnant slab and the overriding North American plate played an important role in the capture of the Baja California (BC) microplate by the Pacific Plate. Active-source seismic reflection and wide-angle seismic refraction profiles across southwestern BC (~24.5°N) are used to image the extent of remnant slab and study its impact on the overriding plate. We infer that the hot, buoyant slab detached ~40 km landward of the fossil trench. Isostatic rebound following slab detachment uplifted the margin and exposed the Magdalena Shelf to wave-base erosion. Subsequent cooling, subsidence and transtensional opening along the shelf (starting ~8 Ma) starved the fossil trench of terrigenous sediment input. Slab detachment and the resultant rebound of the margin provide a mechanism for rapid uplift and exhumation of forearc subduction complexes.
    Description: This work was funded by the NSF Margins Program, grant number OCE-0112058.
    Description: 2012-11-08
    Keywords: Adakite ; Exhumation ; Rifting ; Seismic refraction ; Subduction ; Transtension
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...