GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular histology 26 (1994), S. 754-763 
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary During apoptosis, nuclear pores undergo strong modifications, which are described here in five different apoptotic models. Conventional electron microscopy, supported by freeze-fracture analysis, showed a constant migration of nuclear pores towards the diffuse chromatin areas. In contrast, dense chromatin areas appear pore-free and are frequently surrounded by strongly dilated cisternae. A possible functional significance of this pore behaviour during apoptosis is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0778
    Keywords: hepatocyte ; isolation ; membrane junctions ; electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A transmission E/M, scanning E/M and freeze fracture ultrastructural study has been performed on the rat hepatocyte in the course of isolation from the liver parenchyma. The cell submicroscopic aspect indicates a good morpho-functional preservation from the liver perfusion to the final stages of cell isolation. The freeze fracture membrane analysis evidentiates the constant presence of gap junctions and tight junctions, characterized by particular structural alterations, probably due to progressive functional uncoupling. The persistence of these cell differentiations until complete cell isolation may be considered a further morphological expression of the maintenance of the differentiated stage of the hepatocyte. Fragments of membranes from adjacent cells, still adherent to isolated hepatocyte surfaces, can also be occasionally detected by freeze-fracture techniques.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The definitive version was published in PLoS One 11 (2016): e0162401, doi:10.1371/journal.pone.0162401.
    Description: Heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organelle where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations.
    Description: The research for this paper was partially made possible by the financial support from the PRIN 2010-2011 Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (protocollo 2010RMTLYR) to RC. JMB acknowledges support from The Investment in Science Fund at WHOI. BG, JRE, AJ, LZ, and EMP were supported in part by the Office of Biological and Environmental Research, US Department of Energy (DOE) as part of the Mercury Science Focus Area at Oak Ridge National Laboratory, which is managed by UT-Battelle LLC for the DOE under contract DE-AC05-00OR22725.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ciacci, C., Grimmelpont, M. V., Corsi, I., Bergami, E., Curzi, D., Burini, D., Bouchet, V. M. P., Ambrogini, P., Gobbi, P., Ujiié, Y., Ishitani, Y., Coccioni, R., Bernhard, J. M., & Frontalini, F. Nanoparticle-biological interactions in a marine benthic foraminifer. Scientific Reports, (91), (2019): 19441, doi:10.1038/s41598-019-56037-2.
    Description: The adverse effects of engineered nanomaterials (ENM) in marine environments have recently attracted great attention although their effects on marine benthic organisms such as foraminifera are still largely overlooked. Here we document the effects of three negatively charged ENM, different in size and composition, titanium dioxide (TiO2), polystyrene (PS) and silicon dioxide (SiO2), on a microbial eukaryote (the benthic foraminifera Ammonia parkinsoniana) using multiple approaches. This research clearly shows the presence, within the foraminiferal cytoplasm, of metallic (Ti) and organic (PS) ENM that promote physiological stress. Specifically, marked increases in the accumulation of neutral lipids and enhanced reactive oxygen species production occurred in ENM-treated specimens regardless of ENM type. This study indicates that ENM represent ecotoxicological risks for this microbial eukaryote and presents a new model for the neglected marine benthos by which to assess natural exposure scenarios.
    Description: The authors are very grateful to two anonymous reviewers for their thoughtful and valuable comments that have greatly improved our contribution. NP characterization by DLS was conducted at the facilities of the Department of Biotechnologies, Chemistry and Pharmacy of the University of Siena (Italy). The authors acknowledge Prof. Andrea M. Atrei for the support in DLS analysis. Margot V. Grimmelpont’s stay at Urbino University was supported by an ERASMUS + fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Marine Micropaleontology 138 (2018): 83-89, doi:10.1016/j.marmicro.2017.10.009.
    Description: Heavy metals are known to cause deleterious effects on biota because of their toxicity, persistence and bioaccumulation. Here, we briefly document the ultrastructural changes observed in the miliolid foraminifer Pseudotriloculina rotunda (d'Orbigny in Schlumberger, 1893) and in the perforate calcareous species Ammonia parkinsoniana (d'Orbigny, 1839) induced by exposure to one of three heavy metals (zinc, lead, or mercury). The exposure of these two benthic foraminiferal species to the selected heavy metals appear to promote cytological alterations and organelle degeneration. These alterations include a thickening of the inner organic lining, an increase in number and size of lipid droplets, mitochondrial degeneration, and degradation vacuoles and residual body proliferation. Some of these alterations, including the thickening of the inner organic lining and the proliferation of lipids, might represent defense mechanisms against heavy metal-induced stress.
    Description: The research on Ammonia parkinsoniana was partially supported by the PRIN 2010-2011 Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (protocollo 2010RMTLYR) to RC. The research on Pseudotriloculina rotunda was supported by the Polytechnic University of Marche (PhD thesis of MPN).
    Keywords: Protist ; Pollution ; Miliolid ; Ultrastructure ; Cytoplasm ; Ammonia ; Pseudotriloculina
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...