GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Sediments (Geology). ; Electronic books.
    Description / Table of Contents: This book provides the first summary of known terrestrial distal impact ejecta layers, which although often erased or modified beyond easy recognition, can be vital evidence in helping to plot major climatic and biological effects of meteor impact.
    Type of Medium: Online Resource
    Pages: 1 online resource (722 pages)
    Edition: 1st ed.
    ISBN: 9783540882626
    Series Statement: Impact Studies
    DDC: 551.39
    Language: English
    Note: Intro -- Distal Impact Ejecta Layers -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1…Introduction -- 1.2…Distal Ejecta Layers: Formation and Nomenclature -- 1.3…Importance of Distal Impact Ejecta Layers -- 1.4…Objectives -- 2 Impact Crater Formation, Shock Metamorphism, and Distribution of Impact Ejecta -- 2.1…Introduction -- 2.2…Impact Cratering -- 2.2.1 Energy Considerations -- 2.2.2 Impact Crater Formation -- 2.2.2.1 Contact and Compression Stage -- 2.2.2.2 Excavation Stage -- 2.2.2.3 Modification Stage -- 2.2.3 Simple Craters, Complex Craters, and Multi-Ring Basins -- 2.3…Shock Metamorphism -- 2.3.1 Vaporization and Melting -- 2.3.2 Shock-Induced Decomposition or Dissociation -- 2.3.3 Phase Transformation: High-Pressure Phases -- 2.3.4 Microscopic Shock-Deformation Features -- 2.3.4.1 Dislocations and Kink Bands -- 2.3.4.2 Planar Microstructures -- 2.3.4.2.1…Planar Fractures -- 2.3.4.2.2…Planar Deformation Features -- 2.3.4.2.3 Mechanical Twins -- 2.3.4.3 Mosaicism, X-Ray Asterism, and Diaplectic Glasses -- 2.3.4.4 Post-Shock Thermal Effects -- 2.3.5 Megascopic Shock-Deformation Features: Shatter Cones -- 2.3.6 Stages of Shock Metamorphism -- 2.4…Ejection and Distribution of Ejecta -- 2.5…Numerical Modeling of the Cratering Process -- 2.6…Variations in Ejecta with Distance from the Source Crater -- 2.7…Complications -- 2.7.1 Effects of Earth's Rotation and Atmosphere on Transport and Distribution of Distal Ejecta from Large Impacts -- 2.7.2 Lobate and Ray-Like Ejecta Patterns -- 2.7.3 Reworking of Distal Impact Ejecta by Impact-Produced Tsunamis -- 3 Distal Impact Ejecta Layers: Recognition, Confirmation, Dating, and Determining Source Craters -- 3.1…Recognition of Possible Distal Ejecta Layers -- 3.1.1 Stratigraphy/Lithology -- 3.1.2 Geochemistry -- 3.1.2.1 Siderophile and Platinum Group Elements. , 3.1.2.2 Osmium Isotopic Method -- 3.1.2.3 Chromium Isotopic Method -- 3.1.2.4 Helium-3 and Fullerenes -- 3.2…Confirmation of Impact Origin for a Suspected Distal Impact/Spherule Layer -- 3.2.1 Impact Spherules and Their Identification -- 3.2.1.1 Impact Spherules: Kinds and Description -- 3.2.1.2 Other Naturally-Occurring Spherules -- 3.2.1.3 Manmade Microscopic Spherical Glass Objects -- 3.2.1.4 Identification of Impact Spherules -- 3.2.2 Shock Metamorphism -- 3.3…Dating and Correlation of Distal Impact Ejecta Layers -- 3.3.1 Stratigraphy -- 3.3.2 Radiometric Dating -- 3.4…Search for Source Craters of Distal Ejecta Layers -- 3.4.1 Age of the Source Crater -- 3.4.2 Nature of the Target Rock -- 3.4.3 Size of and Distance to Source Crater -- 3.5…Examples of Spherules Misidentified as Impact Spherules -- 4 Cenozoic Microtektite/Ejecta Layers -- 4.1…Introduction -- 4.1.1 Background -- 4.1.2 Tektites and Tektite Strewn Fields -- 4.2…The AustralasianAustralasian Microtektite Layer -- 4.2.1 Description of the AustralasianAustralasian Microtektites -- 4.2.2 Composition of the AustralasianAustralasian Microtektites -- 4.2.3 Age -- 4.2.4 Geographic Occurrence -- 4.2.5 Nature of the AustralasianAustralasian Microtektite Layer -- 4.2.6 Iridium Anomaly Associated with the AustralasianAustralasian Microtektite Layer -- 4.2.7 Unmelted Ejecta in the Microtektite Layer -- 4.2.8 Transantarctic Mountain Microtektites -- 4.2.9 Geographic Variations Within the AustralasianAustralasian Microtektite Strewn Field -- 4.2.10 Parent Rocks and Estimated Location and Size of the Source Crater -- 4.3…The Ivory CoastIvory Coast Microtektite Layer -- 4.3.1 Description of the Ivory CoastIvory Coast Microtektites -- 4.3.2 Composition -- 4.3.3 Age -- 4.3.4 The Ivory CoastIvory Coast Strewn Field -- 4.3.5 The Source Crater: Bosumtwi. , 4.4…The Central EuropeanCentral European Tektite Strewn Field -- 4.5…The North AmericanNorth American Microtektite Layer -- 4.5.1 Introduction -- 4.5.2 Description of the North AmericanNorth American Microtektites -- 4.5.3 Composition -- 4.5.4 Age -- 4.5.5 Geographic Occurrence -- 4.5.6 Relationship to the Clinopyroxene-Bearing Spherule Layer -- 4.5.7 Unmelted, Shock-Metamorphosed Ejecta Associated with the North AmericanNorth American Microtektite Layer -- 4.5.8 Geographic Variation Within the North AmericanNorth American Strewn Field -- 4.5.9 The Source Crater: Chesapeake BayChesapeake Bay -- 4.6…The Clinopyroxene-Bearing Spherule Layer -- 4.6.1 Introduction -- 4.6.2 Description of Cpx Spherules -- 4.6.3 Composition -- 4.6.4 The Number of Upper Eocene Spherule Layers -- 4.6.5 Age of the Cpx Spherule Layer -- 4.6.6 Geographic Distribution of Cpx Spherules -- 4.6.7 Associated IrIr Anomaly and Shock-Metamorphosed Grains -- 4.6.8 Nature of the Target Rock: Chemical Composition and Sr--Nd Isotopic Data -- 4.6.9 PopigaiPopigai: The Source Crater -- 4.6.10 Meteoritic Contamination and Projectile Identification -- 4.6.11 Geographic Variations Within and Ray-Like Nature of the Cpx Spherule Strewn Field -- 4.6.12 Formation of Cpx Spherules -- 4.6.13 Associated Climatic and Biological Changes -- 4.7…Additional Probable Cenozoic Distal Ejecta Layers -- 4.7.1 North PacificNorth Pacific Microtektites -- 4.7.2 Early Pliocene (4.6--12.1 Ma) Tasman RiseTasman Rise Microtektites -- 4.7.3 Paleocene Nuussuaq Spherule Bed -- 4.8…Distal Impact Glasses not Found in Stratigraphic Layers -- 4.8.1 Guatemalan (Tikal) Tektites (0.8 Ma) -- 4.8.2 Darwin Glass -- 4.8.3 South-Ural Glass -- 4.8.4 High Na/K ''Australites'' -- 4.8.5 Libyan Desert GlassLibyan Desert Glass -- 4.8.6 Urengoites -- 4.9…Other Proposed Cenozoic Distal Ejecta Layers -- 4.9.1 Younger Dryas ''Impact'' Layer. , 4.9.2 Late Pliocene ''Ejecta'' in the Ross Sea, Antarctica -- 4.9.3 The Paleocene-Eocene Event -- 4.10…Miscellaneous -- 4.10.1 Argentine Impact Glasses -- 4.10.2 Meteoritic Dust Layers in Antarctic Ice -- 4.10.3 The Eltanin Event -- 5 Mesozoic Spherule/Impact Ejecta Layers -- 5.1…Introduction -- 5.2…Cretaceous-Tertiary (K-T) Boundary Impact Ejecta Layer -- 5.2.1 Introduction -- 5.2.2 General Description of the K-T Boundary Layer -- 5.2.2.1 Gulf of MexicoGulf of Mexico Region and CubaCuba -- 5.2.2.2 Beloc, HaitiHaiti -- 5.2.2.3 Western Interior, North America -- 5.2.2.4 Western North AtlanticWestern North Atlantic and East Coast of the USAEast Coast of the USA -- 5.2.2.5 Western Equatorial Atlantic -- 5.2.2.6 Pacific OceanPacific Ocean Sites -- 5.2.2.7 Europe and North Africa -- 5.2.2.8 Indian OceanIndian Ocean -- 5.2.2.9 Woodside Creek, New ZealandWoodside Creek, New Zealand -- 5.2.3 Evidence for an Impact Origin -- 5.2.3.1 IrIr Anomaly, Platinum Group Elements (PGEs), and Osmium Isotope Data -- 5.2.3.2 Spherules and Accretionary Lapilli -- 5.2.3.3 NiNi-Rich Spinel Crystals -- 5.2.3.4 Shock Metamorphosed and Shock Produced Mineral Grains -- 5.2.3.4.1‡Shocked Quartz and Feldspar -- 5.2.3.4.2‡Stishovite -- 5.2.3.4.3‡Shocked Chromite and Zircon -- 5.2.3.4.4‡Diamonds -- 5.2.4 Radiometric Age of the Cretaceous-Tertiary (K-T) Boundary Layer -- 5.2.5 Multiple Impact Ejecta Layers in Late Maastrichtian and Early Danian Deposits? -- 5.2.6 The K-T Boundary Source Crater: ChicxulubChicxulub -- 5.2.7 Variations in Nature of the K-T Boundary Layer with Distance from ChicxulubChicxulub -- 5.2.7.1 General Nature of the K-T Boundary Ejecta Layer with Distance from ChicxulubChicxulub -- 5.2.7.2 Dual Nature of the K-T Boundary Layer and Its Cause -- 5.2.7.3 Variation in Thickness of the K-T Boundary Layer with Distance from ChicxulubChicxulub. , 5.2.7.4 Geographic Variation in Maximum IrIr Content and Flux -- 5.2.7.5 Variation in Shocked Quartz Grains with Distance from ChicxulubChicxulub -- 5.2.8 Nature of the K-T Boundary (ChicxulubChicxulub) Projectile -- 5.2.9 The K-T (ChicxulubChicxulub) Impact as the Cause of the Terminal Cretaceous Mass Extinction -- 5.2.9.1 Dust, Global Cooling, Cessation of Photosynthesis -- 5.2.9.2 Wildfires -- 5.2.9.3 Acid Rain -- 5.2.9.4 Ozone Destruction -- 5.2.9.5 Greenhouse Warming -- 5.2.9.6 Other Possible Killing Mechanisms -- 5.2.9.7 Debate Regarding the Cause of the Terminal Cretaceous Mass Extinction -- 5.3…Distal Impact Ejecta from the MansonManson Impact Structure -- 5.3.1 MansonManson Impact Structure -- 5.3.2 Distal Impact Ejecta from the MansonManson Impact Structure -- 5.3.2.1 Introduction -- 5.3.2.2 Evidence of Shock Metamorphism -- 5.3.2.3 Age of the Crow Creek Member Ejecta Layer -- 5.3.2.4 Evidence that the MansonManson Structure Is the Source of the Crow Creek Ejecta Layer -- 5.4…Late Triassic Impact Ejecta Layer -- 5.5…Triassic-Jurassic Boundary Impact? -- 6 Paleozoic Impact Spherule/Ejecta Layers -- 6.1…Introduction -- 6.2…Late Devonian Spherule/Ejecta Layers -- 6.2.1 Introduction -- 6.2.2 The Qidong Silicate Glass Spherule Layer -- 6.2.3 Evidence for an Impact Ejecta Layer Near the Frasnian--Famennian Boundary -- 6.2.3.1 Introduction -- 6.2.3.2 IrIr and Other Platinum Group Element Data -- 6.2.3.3 Impact Spherules (Microtektites?) at SenzeilleSenzeille and HonyHony, Belgium -- 6.2.3.3.1‡Introduction -- 6.2.3.3.2‡Description -- 6.2.3.3.3‡Composition -- 6.2.3.3.4‡Comparison with the Qidong Spherules -- 6.2.3.3.5‡Nature of the Source Rock and Possible Source Crater -- 6.2.3.3.6‡Discussion -- 6.2.3.4 Other Possible Spherule Layers of Frasnian/Famennian Age -- 6.3…Proposed, but Not Accepted Distal Ejecta Layers. , 6.3.1 Permian--Triassic Boundary (PTB).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In a recent article in Terra Nova, Kristan-Tollmann and Tollmann (1994) suggested that the Biblical Flood can be explained by seven fragments of a comet that impacted the ocean at seven locations on Earth at 03.00h (C.E.T.) on 23 September, 9545 yr BP. We demonstrate that all the ‘geological proofs’ that allegedly support their conclusions are not supported by the available data on impact cratering. Their hypothesis is based on insufficient and ambiguous data, selective citation, and incomplete comprehension of previous research.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 32 (2004), S. 329-361 
    ISSN: 0084-6597
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Geosciences , Physics
    Notes: A large extraterrestrial object striking Earth at cosmic velocity melts and vaporizes silicate materials, which can condense into highly spheroidal, sand-size particles that get deposited hundreds to thousands of kilometers from the point of impact. These particles, known as impact spherules, have been detected in great abundance in a relatively small number of thin, discrete layers ranging in age from less than a million years to 3.47 billion years. Unaltered impact spherules consist entirely of glass (microtektites) or a combination of glass and crystals grown in flight (microkrystites). Impact spherule layers form very rapidly and can be very extensive, even global in extent [e.g., the Cretaceous-Tertiary (K/T) boundary layer], so they form excellent time-stratigraphic markers. Because they are always found in a stratigraphic context, spherule layers are probably superior to terrestrial craters and related structures for assessing the environmental and biotic effects of large impacts. A record of impacts whose craters have since been obliterated, most notably those in pre-Mesozoic oceanic crust, could survive in the form of spherule layers. Secular changes in surface environments and/or the nature of the impactors striking Earth through its history could also be reflected in differences in spherules and spherule layers as a function of geologic age. In this paper, we briefly review what spherules and spherule layers are and the processes that create them, then speculate about what might be learned through wider identification of and more extensive study of impact spherule layers.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Mineralogical Society of America
    Publication Date: 2012-02-01
    Description: During the formation of large impact structures, layers of melted and crushed rock (ejecta) are deposited over large areas of the Earth's surface. Ejecta thrown farther than 2.5 crater diameters are called distal ejecta. At distances greater than ~10 crater diameters, the distal ejecta layers consist primarily of millimeter-scale glassy bodies (impact spherules) that form from melt and vapor-condensate droplets. At least 28 distal ejecta layers have been identified. Distal ejecta layers can be used to place constraints on cratering models, help fill gaps in the cratering record, and provide direct correlation between impacts and other terrestrial events.
    Print ISSN: 1811-5209
    Electronic ISSN: 1811-5217
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...