GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-24
    Description: The noble gases He, Ne and Ar in fluid inclusions from mantle xenoliths at three localities in Northern Victoria Land (Baker Rocks, Greene Point and Handler Ridge), spanning about 300 km, provide new constraints on the nature of the lithospheric mantle beneath the West Antarctic Rift System (WARS). Mantle xenoliths are anhydrous and hydrous spinel-bearing lherzolite and harzburgite samples. The 4He/40Ar* ratios (0.004–0.39) in olivines, two pyroxenes and amphiboles are much lower than those typical of fertile mantle (1–5), suggesting that this lithospheric domain are consistent with a variably depleted mantle, as also indicated by the major- and trace-element compositions of whole rock and minerals. The 3He/4He ratios vary from 2.30 to 19.79 Ra. However, the lowest and highest 3He/4He ratios are related to the post-eruptive accumulation of radiogenic 4He and cosmogenic 3He, respectively. After filtering the data for these secondary effects, we constrain the 3He/4He signature of the subcontinental lithospheric mantle below this area to 7.1 ± 0.4 Ra (mean ± standard deviation). This isotope signature results from mantle metasomatism by asthenospheric melts with a MORB (midocean ridge basalt)-type 3He/4He. The range of 7.1 ± 0.4 Ra is compatible with previous measurements in mantle xenoliths and lavas from other localities of the NVL, as far away as Mount Erebus, evidencing a homogeneous He-isotope signature beneath the entire rift. The He and Ne isotopes support the hypothesis that WARS origin is not related to a plume.
    Description: Published
    Description: 104-118
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Antarctic ; Metasomatism ; xenolith ; Rift Mantle ; Fluid inclusions ; Noble gases ; SCLM ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-07
    Description: The investigation of the role played by CO2 circulating within the mantle during partial melting and metasomatic/refertilization processes, together with a re-consideration of its storage capability and re-cycling in the lithospheric mantle, is crucial to unravel the Earth's main geodynamic processes. In this study, the combination of petrology, CO2 content trapped in bulk rock- and mineral-hosted fluid inclusions (FI), and 3D textural and volumetric characterization of intra- and inter-granular microstructures was used to investigate the extent and modality of CO2 storage in depleted and fertile (or refertilized) Sub-Continental Lithospheric Mantle (SCLM) beneath northern Victoria Land (NVL, Antarctica). Prior to xenoliths entrainment by the host basalt, the Antarctic SCLM may have stored 0.2 vol% melt and 1.1 vol% fluids, mostly as FI trails inside mineral phases but also as inter-granular fluids. The amount of CO2 stored in FI varies from 0.1 μg(CO2)/g(sample) in olivine from the anhydrous mantle xenoliths at Greene Point and Handler Ridge, up to 187.3 μg/g in orthopyroxene from the highly metasomatized amphibole-bearing lherzolites at Baker Rocks, while the corresponding bulk CO2 contents range from 0.3 to 57.2 μg/g. Irrespective of the lithology, CO2 partitioning is favoured in orthopyroxene and clinopyroxene-hosted FI (olivine: orthopyroxene = 0.10 ± 0.06 to 0.26 ± 0.09; olivine: clinopyroxene = 0.10 ± 0.05 to 0.27 ± 0.14). The H2O/(H2O + CO2) molar ratios obtained by comparing the CO2 contents of FI to the H2O amount retained in pyroxene lattices vary between 0.72 ± 0.17 and 0.97 ± 0.03, which is well comparable with the values measured in olivine-hosted melt inclusions from Antarctic primary lavas and assumed as representative of the partition of volatiles at the local mantle conditions. From the relationships between mineral chemistry, thermo-, oxybarometric results and CO2 contents in mantle xenoliths, we speculate that relicts of CO2-depleted mantle are present at Greene Point, representing memory of a CO2-poor tholeiitic refertilization related to the development of the Jurassic Ferrar large magmatic event. On the other hand, a massive mobilization of CO2 took place before the (melt-related) formation of amphibole veins during the alkaline metasomatic event associated with the Cenozoic rift-related magmatism, in response to the storage and recycling of CO2-bearing materials into the Antarctica mantle likely induced by the prolonged Ross subduction.
    Description: Published
    Description: 106643
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: CO2 storage ; Sub-Continental Lithospheric Mantle ; Alkaline metasomatism ; Fluid inclusions ; Synchrotron X-ray microtomography ; Inter-granular fluids ; 04.01. Earth Interior ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-18
    Description: The petrological study of volcanic products emitted during the paroxysmal events of December 2015 from the summit craters of Mount Etna allow us to constrain T-P-XH2O phase stability, crystallization conditions, and mixing processes along the main open-conduit feeding system. In this study, we discuss new geochemical, thermo-barometric data and related Rhyolite- MELTS modelling of the eruptive activity that involved the concomitant activation of all summit craters. The results, in comparison with the previous paroxysmal events of the 2011–2012, reinforce the model of a vertically extended feeding system and highlight that the activity at the New South-East Crater was fed by magma residing at a significantly shallower depth with respect to the Central Craters (CC) and North-East Crater (NEC), even if all conduits were fed by a common deep (P = 530–440 MPa) basic magmatic input. Plagioclase dissolution, resorption textures, and the Rhyolite-MELTS stability model corroborate its dependence on H2O content; thus, suggesting that further studies on the effect that flushing from fluids with different H2O/ CO2 ratio are needed to understand the eruption-triggering mechanisms for high energetic strombolian paroxysmal episodes.
    Description: Published
    Description: 88
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-16
    Description: Although often speculated, the link between theMiddle Triassic shoshonitic magmatismat the NE margin of the Adria plate and the subduction-related metasomatismof the Southern Alps Sub-Continental Lithospheric Mantle (SCLM) has never been constrained. In this paper, a detailed geochemical and petrological characterization of the lavas, dykes and ultramafic cumulates belonging to the shoshonitic magmatic event that shaped the Dolomites (Southern Alps) was used tomodel the composition and evolution of the underlying SCLMin the time comprised between the Variscan subduction and the opening of the Alpine Tethys. Geochemical models and numerical simulations enabled us to define that 5–7% partial melting of an amphibole + phlogopite-bearing spinel lherzolite, similar to the Finero phlogopite peridotite, can account for the composition of the primitive Mid-Triassic SiO2- saturated to -undersaturated melts with shoshonitic affinity (87Sr/86Sri = 0.7032–0.7058; 143Nd/144Ndi = 0.51219–0.51235; Mg # ~ 70; ~1.1 wt% H2O). By taking into account the H2O content documented in mineral phases from the Finero phlogopite peridotite, it is suggested that the Mid-Triassic SCLM source was able to preserve a significant enrichment and volatile content (600–800 ppm H2O) for more than 50 Ma, i.e. since the slab-related metasomatismconnected to the Variscan subduction. The partialmelting of a Finero-like SCLM represents the exhaustion of the subduction-related signature in the Southern Alps lithosphere that predated the Late Triassic-Early Jurassic asthenospheric upwelling related to the opening of the Alpine Tethys.
    Description: Published
    Description: 105856
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...