GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 468 (1986), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2109
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2109
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The effects of light intensity on feeding incidence and prey consumption at first feeding of spotted sand bass larvae (Paralabrax maculatofasciatus Steindachner), using four light intensity treatments (0, 100, 400, and 700 lx) were evaluated. Specimens were fed the rotifer Brachionus plicatilis at a density of 3 rotifers mL−1. One hour after the addition of prey, 30±3 (mean±SEM) larvae were sampled from each treatment aquarium. Feeding incidence was evaluated as the percentage of larvae with prey in the digestive tract. Feeding intensity was measured as the number of prey in the digestive tract of the larvae. Histological analysis was carried out to describe the eye structure at the time of first feeding. Larvae fed in darkness (0 lx) had a significantly lower (P〈0.05) feeding incidence (1.2±2.2%) and intensity (0.4±0.7 rotifers  larvae−1) than those larvae fed at 100 (28±11%, 1.8±0.2 rotifers larvae−1), 400 (48±10%, 2.4±0.3 rotifers larvae−1), and 700 lx (52±4%, 2.4±0.1 rotifers larvae−1). Feeding incidence of the spotted sand bass larvae increased with light intensity while the feeding intensity showed no significant difference (P〉0.05) between light treatments. Histological analysis of the eye structure showed that first feeding larvae had well-formed lens along with a retina composed of pure single cones as photoreceptors.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-01
    Description: Amiantis purpurata is a common warm-temperate water bivalve species distributed from southern Brazil to northern Patagonia, Argentina, which has a rich and well preserved fossil record in the San Matias Gulf (SMG) dating back to the late Quaternary. This study aims to establish A. purpurata shells as a new palaeoarchive of past marine conditions in South America. We compared the stable oxygen and carbon profiles (818O,heu; 813CS hcii) of eleven specimens of A. purpurata from different geological times (modem, Late Holocene and interglacial Late Pleistocene), and additionally present in situ oxygen isotope values of seawater within SMG (S,8Owatcr). Using both sets of information, we calculated and reconstructed palaeowater temperatures for the Late Holocene and compared them to modem water temperatures. Our findings indicate that A. purpurata records past environmental parameters such as water temperatures on a seasonal scale and can therefore be considered a suitable candidate for future palaeoenvironmental reconstructions in Northern Patagonia. This study is the first step towards further stable isotope analyses on fossil A. purpurata shells, which will show whether and if so, to what extent, important global climate events such as the Neoglacial (Early Holocene), the Hypsithermal (Middle Holocene) and the Little Ice Age (Late Holocene) occurred in South America.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 5891-5907, doi:10.5194/bg-15-5891-2018.
    Description: Large-scale climatic forcing is impacting oceanic biogeochemical cycles and is expected to influence the water-column distribution of trace gases, including methane and nitrous oxide. Our ability as a scientific community to evaluate changes in the water-column inventories of methane and nitrous oxide depends largely on our capacity to obtain robust and accurate concentration measurements that can be validated across different laboratory groups. This study represents the first formal international intercomparison of oceanic methane and nitrous oxide measurements whereby participating laboratories received batches of seawater samples from the subtropical Pacific Ocean and the Baltic Sea. Additionally, compressed gas standards from the same calibration scale were distributed to the majority of participating laboratories to improve the analytical accuracy of the gas measurements. The computations used by each laboratory to derive the dissolved gas concentrations were also evaluated for inconsistencies (e.g., pressure and temperature corrections, solubility constants). The results from the intercomparison and intercalibration provided invaluable insights into methane and nitrous oxide measurements. It was observed that analyses of seawater samples with the lowest concentrations of methane and nitrous oxide had the lowest precisions. In comparison, while the analytical precision for samples with the highest concentrations of trace gases was better, the variability between the different laboratories was higher: 36% for methane and 27% for nitrous oxide. In addition, the comparison of different batches of seawater samples with methane and nitrous oxide concentrations that ranged over an order of magnitude revealed the ramifications of different calibration procedures for each trace gas. Finally, this study builds upon the intercomparison results to develop recommendations for improving oceanic methane and nitrous oxide measurements, with the aim of precluding future analytical discrepancies between laboratories.
    Description: U.S. National Science Foundation (OCE-1546580); Funding for the gas standards was provided by the Center for Microbial Oceanography: Research and Education (C-MORE; EF0424599 to David M. Karl), SCOR, the EU FP7 funded Integrated non-CO2 Greenhouse gas Observation System (InGOS) (grant agreement no. 284274), and NOAA’s Climate Program Office, Climate Observations Division. Additional support was provided by the Gordon and Betty Moore Foundation no. 3794 (David M. Karl), the Simons Collaboration on Ocean Processes and Ecology (SCOPE; no. 329108 to David M. Karl), and the Global Research Laboratory Program (no. 2013K1A1A2A02078278 to David M. Karl) through the National Research Foundation of Korea (NRF); Alyson E. Santoro would like to acknowledge NSF OCE-1437310. Mercedes de la Paz would like to acknowledge the support of the Spanish Ministry of Economy and Competitiveness (CTM2015-74510-JIN). Laura Farías received financial support from FONDAP 1511009 and FONDECYT no. 1161138
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: Large-scale climatic forcing is impacting oceanic biogeochemical cycles and is expected to influence the water-column distribution of trace gases, including methane and nitrous oxide. Our ability as a scientific community to evaluate changes in the water-column inventories of methane and nitrous oxide depends largely on our capacity to obtain robust and accurate concentration measurements that can be validated across different laboratory groups. This study represents the first formal international intercomparison of oceanic methane and nitrous oxide measurements whereby participating laboratories received batches of seawater samples from the subtropical Pacific Ocean and the Baltic Sea. Additionally, compressed gas standards from the same calibration scale were distributed to the majority of participating laboratories to improve the analytical accuracy of the gas measurements. The computations used by each laboratory to derive the dissolved gas concentrations were also evaluated for inconsistencies (e.g., pressure and temperature corrections, solubility constants). The results from the intercomparison and intercalibration provided invaluable insights into methane and nitrous oxide measurements. It was observed that analyses of seawater samples with the lowest concentrations of methane and nitrous oxide had the lowest precisions. In comparison, while the analytical precision for samples with the highest concentrations of trace gases was better, the variability between the different laboratories was higher: 36% for methane and 27% for nitrous oxide. In addition, the comparison of different batches of seawater samples with methane and nitrous oxide concentrations that ranged over an order of magnitude revealed the ramifications of different calibration procedures for each trace gas. Finally, this study builds upon the intercomparison results to develop recommendations for improving oceanic methane and nitrous oxide measurements, with the aim of precluding future analytical discrepancies between laboratories.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...