GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015]. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 112 (2015): 4576–4581, doi: 10.1073/pnas.1422270112.
    Description: Assessing temporal variability in extreme rainfall events prior to the historical era is complicated by the sparsity of long-term ‘direct’ storm proxies. Here we present a 2200-yr-long, accurate and precisely dated record of cave flooding events from the northwest Australian tropics that we interpret, based on an integrated analysis of meteorological data and sediment layers within stalagmites, as representing a proxy for extreme rainfall events derived primarily from tropical cyclones (TCs) and secondarily from the regional summer monsoon. This time series reveals substantial multi-centennial variability in extreme rainfall, with elevated occurrence rates characterizing the twentieth century, the period 850-1450 CE, and 50-400 CE; reduced activity marks 1450-1650 CE and 500-850 CE. These trends are similar to reconstructed numbers of TCs in the North Atlantic and Caribbean basins, and form temporal and spatial patterns best explained by secular changes in the dominant mode of the El Niño-Southern Oscillation (ENSO), the primary driver of modern TC variability. We thus attribute long-term shifts in cyclogenesis in both the central Australian and North Atlantic sectors over the past two millennia to entrenched El Niño or La Niña states of the tropical Pacific. The influence of ENSO on monsoon precipitation in this region of northwest Australia is muted, but ENSO-driven changes to the monsoon may have complemented changes to TC activity.
    Description: Funding was provided by the Paleo Perspectives on Climate Change (P2C2) program of the United States National Science Foundation (NSF) through grant AGS-1103413, a seed grant from the Center for Global and Regional Environmental Research, and Cornell College (all to R.D.), the Kimberley Foundation Australia (to K-H.W.), and Penzance and John P. Chase Memorial Endowed Funds at WHOI (to C.U.).
    Description: 2015-09-30
    Keywords: Speleothem ; Tropical cyclone ; Monsoon ; El Niño/Southern Oscillation ; Australia
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 34485, doi:10.1038/srep34485.
    Description: The seasonal north-south migration of the intertropical convergence zone (ITCZ) defines the tropical rain belt (TRB), a region of enormous terrestrial and marine biodiversity and home to 40% of people on Earth. The TRB is dynamic and has been shown to shift south as a coherent system during periods of Northern Hemisphere cooling. However, recent studies of Indo-Pacific hydroclimate suggest that during the Little Ice Age (LIA; AD 1400–1850), the TRB in this region contracted rather than being displaced uniformly southward. This behaviour is not well understood, particularly during climatic fluctuations less pronounced than those of the LIA, the largest centennial-scale cool period of the last millennium. Here we show that the Indo-Pacific TRB expanded and contracted numerous times over multi-decadal to centennial scales during the last 3,000 yr. By integrating precisely-dated stalagmite records of tropical hydroclimate from southern China with a newly enhanced stalagmite time series from northern Australia, our study reveals a previously unidentified coherence between the austral and boreal summer monsoon. State-of-the-art climate model simulations of the last millennium suggest these are linked to changes in the structure of the regional manifestation of the atmosphere’s meridional circulation.
    Description: Funded by grants from the US National Science Foundation (NSF) Paleo Perspectives on Climate Change (P2C2) program (AGS-1103413), the Center for Global and Regional Environmental Research, and Cornell College (to R.F.D.); and the NSF P2C2 program (AGS-1203704 and AGS-1602455) and the Penzance and John P. Chase Memorial Endowed Funds at WHOI (to C.C.U.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Quaternary Science Reviews 176 (2017): 101-105, doi:10.1016/j.quascirev.2017.09.014.
    Description: Recent studies of stalagmites from the Southern Hemisphere tropics of Indonesia revealed two shifts in monsoon activity not apparent in records from the Northern Hemisphere sectors of the Austral-Asian monsoon system: an interval of enhanced rainfall at ~19 ka, immediately prior to Heinrich Stadial 1, and a sharp increase in precipitation at ~9 ka. Determining whether these events are site-specific or regional is important for understanding the full range of sensitivities of the Austral-Asian monsoon. We present a discontinuous 40 kyr carbon isotope record of stalagmites from two caves in the Kimberley region of the north-central Australian tropics. Heinrich stadials are represented by pronounced negative carbon isotopic anomalies, indicative of enhanced rainfall associated with a southward shift of the intertropical convergence zone and consistent with hydroclimatic changes observed across Asia and the Indo- Pacific. Between 20-8 ka, however, the Kimberley stalagmites, like the Indonesian record, reveal decoupling of monsoon behavior from Southeast Asia, including the early deglacial wet period (which we term the Late Glacial Pluvial) and the abrupt strengthening of early Holocene monsoon rainfall.
    Description: Funded by grants from the U.S. National Science Foundation Paleo Perspectives on Climate Change program (AGS-1103413 and AGS-1502917 to RFD) and AGS-1602455 (to CCU and RFD), the Center for Global and Regional Environmental Research, and Cornell College (to RFD). CCU acknowledges support from The Investment in Science Fund given primarily by WHOI Trustee and Corporation Members. Support also received from the Kimberley Foundation Australia.
    Keywords: Stalagmite ; Carbon isotope ; Oxygen isotope ; Indo-Australian summer monsoon
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...