GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 108 (2011): 4352-4357, doi:10.1073/pnas.1016106108.
    Description: Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful 43 Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.
    Description: Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Efforts were also supported by awards from New York Sea Grant to Stony Brook University, National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research award #NA09NOS4780206 to Woods Hole Oceanographic Institution, NIH grant GM061603 to Harvard University, and NSF award IOS-0841918 to The University of Tennessee.
    Keywords: Harmful algal blooms ; HABs ; Genome sequence ; Ecogenomics ; Metaproteomics ; Eutrophication ; Aureococcus anophagefferens
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Faktorova, D., Nisbet, R. E. R., Robledo, J. A. F., Casacuberta, E., Sudek, L., Allen, A. E., Ares, M., Jr., Areste, C., Balestreri, C., Barbrook, A. C., Beardslee, P., Bender, S., Booth, D. S., Bouget, F., Bowler, C., Breglia, S. A., Brownlee, C., Burger, G., Cerutti, H., Cesaroni, R., Chiurillo, M. A., Clemente, T., Coles, D. B., Collier, J. L., Cooney, E. C., Coyne, K., Docampo, R., Dupont, C. L., Edgcomb, V., Einarsson, E., Elustondo, P. A., Federici, F., Freire-Beneitez, V., Freyria, N. J., Fukuda, K., Garcia, P. A., Girguis, P. R., Gomaa, F., Gornik, S. G., Guo, J., Hampl, V., Hanawa, Y., Haro-Contreras, E. R., Hehenberger, E., Highfield, A., Hirakawa, Y., Hopes, A., Howe, C. J., Hu, I., Ibanez, J., Irwin, N. A. T., Ishii, Y., Janowicz, N. E., Jones, A. C., Kachale, A., Fujimura-Kamada, K., Kaur, B., Kaye, J. Z., Kazana, E., Keeling, P. J., King, N., Klobutcher, L. A., Lander, N., Lassadi, I., Li, Z., Lin, S., Lozano, J., Luan, F., Maruyama, S., Matute, T., Miceli, C., Minagawa, J., Moosburner, M., Najle, S. R., Nanjappa, D., Nimmo, I. C., Noble, L., Vanclova, A. M. G. N., Nowacki, M., Nunez, I., Pain, A., Piersanti, A., Pucciarelli, S., Pyrih, J., Rest, J. S., Rius, M., Robertson, D., Ruaud, A., Ruiz-Trillo, I., Sigg, M. A., Silver, P. A., Slamovits, C. H., Smith, G. J., Sprecher, B. N., Stern, R., Swart, E. C., Tsaousis, A. D., Tsypin, L., Turkewitz, A., Turnsek, J., Valach, M., Verge, V., von Dassow, P., von der Haar, T., Waller, R. F., Wang, L., Wen, X., Wheeler, G., Woods, A., Zhang, H., Mock, T., Worden, A. Z., & Lukes, J. Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nature Methods, 17, (2020): 481-494, doi:10.1038/s41592-020-0796-x.
    Description: Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.
    Description: We thank M. Salisbury and D. Lacono, C. Poirier, M. Hamilton, C. Eckmann, H. Igel, C. Yung and K. Hoadley for assistance; V.K. Nagarajan, M. Accerbi and P.J. Green who carried out Agrobacterium studies in Heterosigma akashiwo, and N. Kraeva, C. Bianchi and V. Yurchenko for the help with designing the p57-V5+NeoR construct. We are also grateful to the protocols.io team (L. Teytelman and A. Broellochs) for their support. This collaborative effort was supported by the Gordon and Betty Moore Foundation EMS Program of the Marine Microbiology Initiative (grant nos. GBMF4972 and 4972.01 to F.-Y.B.; GBMF4970 and 4970.01 to M.A. and A.Z.W.; GBMF3788 to A.Z.W.; GBMF 4968 and 4968.01 to H.C.; GBMF4984 to V.H.; GBMF4974 and 4974.01 to C. Brownlee; GBMF4964 to Y. Hirakawa; GBMF4961 to T. Mock; GBMF4958 to P.S.; GBMF4957 to A.T.; GBMF4960 to G.J.S.; GBMF4979 to K.C.; GBMF4982 and 4982.01 to J.L.C.; GBMF4964 to P.J.K.; GBMF4981 to P.v.D.; GBMF5006 to A.E.A.; GBMF4986 to C.M.; GBMF4962 to J.A.F.R.; GBMF4980 and 4980.01 to S.L.; GBMF 4977 and 4977.01 to R.F.W.; GBMF4962.01 to C.H.S.; GBMF4985 to J.M.; GBMF4976 and 4976.01 to C.H.; GBMF4963 and 4963.01 to V.E.; GBMF5007 to C.L.D.; GBMF4983 and 4983.01 to J.L.; GBMF4975 and 4975.01 to A.D.T.; GBMF4973 and 4973.01 to I.R.-T. and GBMF4965 to N.K.), by The Leverhulme Trust (RPG-2017-364) to T. Mock and A. Hopes, and by ERD funds (16_019/0000759) from the Czech Ministry of Education to J.L.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Biology 12 (2014): e1001889, doi:10.1371/journal.pbio.1001889.
    Description: Microbial ecology is plagued by problems of an abstract nature. Cell sizes are so small and population sizes so large that both are virtually incomprehensible. Niches are so far from our everyday experience as to make their very definition elusive. Organisms that may be abundant and critical to our survival are little understood, seldom described and/or cultured, and sometimes yet to be even seen. One way to confront these problems is to use data of an even more abstract nature: molecular sequence data. Massive environmental nucleic acid sequencing, such as metagenomics or metatranscriptomics, promises functional analysis of microbial communities as a whole, without prior knowledge of which organisms are in the environment or exactly how they are interacting. But sequence-based ecological studies nearly always use a comparative approach, and that requires relevant reference sequences, which are an extremely limited resource when it comes to microbial eukaryotes. In practice, this means sequence databases need to be populated with enormous quantities of data for which we have some certainties about the source. Most important is the taxonomic identity of the organism from which a sequence is derived and as much functional identification of the encoded proteins as possible. In an ideal world, such information would be available as a large set of complete, well-curated, and annotated genomes for all the major organisms from the environment in question. Reality substantially diverges from this ideal, but at least for bacterial molecular ecology, there is a database consisting of thousands of complete genomes from a wide range of taxa, supplemented by a phylogeny-driven approach to diversifying genomics. For eukaryotes, the number of available genomes is far, far fewer, and we have relied much more heavily on random growth of sequence databases, raising the question as to whether this is fit for purpose.
    Description: This project was funded by the Gordon and Betty Moore Foundation (GBMF; Grants GBMF2637 and GBMF3111) to the National Center for Genome Resources (NCGR) and the National Center for Marine Algae and Microbiota (NCMA).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    The @journal of eukaryotic microbiology 52 (2005), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Molecular methods offer an efficient alternative to microscopic identification of dinoflagellate cysts in natural sediments. Unfortunately, amplification of DNA also detects the presence of dead cells and is not a reliable indication of cyst viability. Because mRNA transcripts are more labile than DNA, the presence of specific transcripts may be used as a proxy for cyst viability. Here, we evaluate mRNA detection capabilities for identification of viable cysts of the dinoflagellate, Pfiesteria piscicida, in natural sediment samples. We targeted transcripts for cytochrome c oxidase subunit 1, cytochrome b (COB), and Tags 343 and 277, recently identified by serial analysis of gene expression. Expression was confirmed in laboratory cultures and compared with natural sediment samples. Three of the transcripts were detected in sediments by RT-PCR. The fourth transcript, for COB, was not detected in sediments, perhaps because of down-regulation of the gene in anoxic conditions. Our results suggest that methods targeting specific mRNA transcripts may be useful for detection of viable cysts in natural sediment samples. In addition, dinoflagellate cysts, which sustain extended periods of anoxia, may provide an important source of data for studies of anoxia tolerance by microbial eukaryotes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-22
    Description: We measured the presence, viability and potential toxicity of cyanobacteria in ships’ ballast tanks during three domestic voyages through the North American Great Lakes. Using molecular methods, the toxin-producing forms of Microcystis and Anabaena were monitored in ballast water after ships’ ballast tanks were filled at their first port of call, and at subsequent ports as ships transited the Great Lakes. Microcystis was detected in ballast water at intermediate and final ports of call in all three experiments, but the presence of Anabaena was more variable, suggesting low abundance or patchy distribution in ballast tanks. Both species were detected in ballast water up to 11 days old. Detection of the microcystin synthetase gene, mcyE, in ballast tanks indicated entrained cells were capable of producing microcystin, and further analyses of RNA indicated the toxin was being expressed by Microcystis, even after 11 days in dark transit. These data demonstrate within-basin transport and delivery of planktonic harmful algal bloom (HAB) species to distant ports in the world's largest freshwater reservoir, with potential implications for drinking water quality. These implications are discussed with respect to management of microbial invasions and the fate of introduced phytoplankton in their receiving environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...