GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2024-02-07
    Description: Highlights • Tunisian Coral Mounds: first known to develop during the last glacial in the Mediterranean. • High surface productivity and adequate AW-LIW interface depth forced mound formation. • Distance from mounds to AW-LIW interface key in defining their formation pace. Cold-water corals are key species of benthic ecosystems, sensitive to changes in climate and capable of recording them in the chemical composition of their skeletons. The study of cold-water coral mound development in relation to palaeoceanographic variations during the Pleistocene and Holocene stages in the Mediterranean Sea has mainly been focussed in the Alboran Sea (Western Mediterranean). The present study describes the coral deposits and corresponding ages of 3 gravity cores, acquired from the newly discovered Tunisian Coral Mound Province (Central Mediterranean), which comprises several ridge-like mounds. All the cores acquired displayed dense coral deposits, dominated by Desmophyllum pertusum fragments embedded within a muddy sediment matrix. Overall, 64 coral samples have been dated with the Usingle bondTh laser ablation MC-ICP-MS method, revealing corals of mostly Pleistocene age ranging from ~MIS 11 to 8.4 ka BP. Although coral mound formation was reduced for most of the last 400 kyr, a main stage of pronounced mound formation occurred during the last glacial period, which contrasts to the findings previously published for coral mounds in other regions of the Mediterranean Sea. Coral mound formation during the last glacial was most likely associated with a colder seawater temperature than the one observed in the present-day, an increased surface productivity and an appropriate depth of the interface between Atlantic Waters and Levantine Intermediate Waters. The combination of the data acquired here with that of previous mound formation studies from the Alboran Sea also suggests that cold-water coral mounds located at greater depths develop at slower rates than those found in shallower settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Highlights • Atlantic and Mediterranean water-mass interface depth affected coral mound growth. • Sapropel derived events had a detrimental influence on coral mound development. • A shift in the reef-building dominating coral species occurred during the Holocene. • The southern mound has been subjected to less favourable environmental conditions. Abstract Cold-water coral mounds are key hot-spots of deep ocean biodiversity and also important archives of past climatic conditions. Nonetheless, the paleo-oceanographic setting in which coral mounds developed in the Mediterranean Sea during the last 500 ka still needs to be properly understood. This study describes the coral deposits and corresponding ages of two on-mound gravity cores acquired from opposite sectors of the newly discovered Cabliers Coral Mound Province (CMP, Alboran Sea, W Mediterranean). U–Th data revealed Pleistocene-aged corals covering mound formation periods from 〉389 to 9.3 ka BP and from 13.7 to 0.3 ka BP in the southern and northern mounds respectively. The coral-rich deposits of the cores were mainly dominated by Desmophyllum pertusum, although in some sections concurrent with the Middle Pleistocene and the Holocene, other corals such as Dendrophyllia cornigera and Madrepora oculata also appeared as dominating species. Coral mound formation stages generally occurred during deglacials and temperate interstadial (3.5–4.1 δ18O‰) periods, whereas during interglacials (〈3.5 δ18O‰) coral mound formation only occurred in the northern and shallower mound. We interpret this to indicate that the shoaling of the interface between Atlantic (AW) and Levantine Intermediate Waters (LIW) during interglacial periods prevented the corals in the southern CMP from acquiring sufficient food supply, thus causing periods of coral mound stagnation. Similarly, the interruption in LIW formation throughout sapropel events also coincides with coral mound stagnation phases. This suggests that sapropel-derived processes, which originated in the eastern Mediterranean, likely affected the entire Mediterranean basin and further supports the role of LIW as a conveyor belt facilitating cold-water coral growth in the Mediterranean Sea. Overall, we show that these coral mounds yield important insights into how local changes in oceanographic conditions can influence coral mound development.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...