GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 16 (6). pp. 1950-1961.
    Publication Date: 2017-04-12
    Description: High-resolution magnetic surveys have been acquired over the partially sedimented Palinuro massive sulfide deposits in the Aeolian volcanic arc, Tyrrhenian Sea. Surveys flown close to the seafloor using an autonomous underwater vehicle (AUV) show that the volcanic-arc-related basalt-hosted hydrothermal site is associated with zones of lower magnetization. This observation reflects the alteration of basalt affected by hydrothermal circulation and/or the progressive accumulation of a nonmagnetic deposit made of hydrothermal and volcaniclastic material and/or a thermal demagnetization of titanomagnetite due to the upwelling of hot fluids. To discriminate among these inferences, estimate the shape of the nonmagnetic deposit and the characteristics of the underlying altered area—the stockwork—we use high-resolution vector magnetic data acquired by the AUV Abyss (GEOMAR) above a crater-shaped depression hosting a weakly active hydrothermal site. Our study unveils a relatively small nonmagnetic deposit accumulated at the bottom of the depression and locked between the surrounding volcanic cones. Thermal demagnetization is unlikely but the stockwork extends beyond the limits of the nonmagnetic deposit, forming lobe-shaped zones believed to be a consequence of older volcanic episodes having contributed in generating the cones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-01
    Description: The 500 m.y. cycle whereby continents assemble in a single supercontinent and then fragment and disperse again involves the rupturing of a continent and the birth of a new ocean, with the formation of passive plate margins. This process is well displayed today in the Red Sea, where Arabia is separating from Africa. We carried out geophysical surveys and bottom rock sampling in the two Red Sea northernmost axial segments of initial oceanic crust accretion, Thetis and Nereus. Areal variations of crustal thickness, magnetic intensity, and degree of melting of the subaxial upwelling mantle reveal an initial burst of active oceanic crust generation and rapid seafloor spreading below each cell, occurring as soon as the lid of continental lithosphere breaks. This initial pulse may be caused by edge-driven subrift mantle convection, triggered by a strong horizontal thermal gradient between the cold continental lithosphere and the hot ascending asthenosphere. The thermal gradient weakens as the oceanic rift widens; therefore the initial active pulse fades into steady, more passive crustal accretion, with slower spreading and along axis rift propagation.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-17
    Description: Catastrophic collapses of submarine volcanoes have the potential to generate major tsunami, threatening many coastal populations. Recognizing the difficulties surrounding anticipations of these events, quantitative assessment of collapse-prone regions based on detailed morphological, geological, and geophysical mapping can still provide important information about the hazards associated with these collapses. Rumble III is one of the shallowest, and largest, submarine volcanoes found along the Kermadec arc, and is both volcanically and hydrothermally active. Previous surveys have delineated major collapse features at Rumble III ; based on time-lapse bathymetry, dramatic changes in the volcano morphology have been shown to have occurred over the interval 2007–2009. Furthermore, this volcano is located just 300 km from the east coast of the North Island of New Zealand. Here, we present a geophysical model for Rumble III that provides the locations and sizes of potential weak regions of this volcano. Shipborne and near-seafloor geological and geophysical data collected by the AUV Sentry are used to determine the subsurface distribution of weak and unstable volcanic rocks. The resulting model provides evidence for potentially unstable areas located in the Southeastern flank of this volcano which should be included in future hazard predictions.
    Description: Published
    Description: 4667–4680
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: 3A. Geofisica marina
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-14
    Description: New multichannel seismic reflection profiles were acquired to unravel the structure of a portion of the eastern margin of the Tyrrhenian basin. This extensional feature is part of an Oligocene to Present back-arc basin in the hangingwall of the west directed Apennines subduction system. The basin provides excellent conditions to investigate the early stage processes leading to the development of rifted passive margins and to the emplacement of oceanic crust in an oblique setting. The interpreted post-stack-migrated seismic profiles highlight the geometry and kinematics of the Pontine escarpment that connects the Latium-Campania continental margin to the Vavilov basin. The latter is the main feature of the area, related to the early Pliocene extension of the Tyrrhenian Sea. Several morphological variations are pointed out along strike, mirroring different structural settings of the margin itself: a steeper margin to the north corresponds to high-angle possibly transtensional faults, whereas a smooth slope in the southern portion corresponds to several more distributed listric faults. This work contributes to the understanding of the interplay between extensional and transtensional tectonics along the margins of an oblique back-arc basin.
    Description: Published
    Description: 78–107
    Description: 3A. Geofisica marina
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-03
    Description: New high-resolution geophysical data collected along the eastern margin of the Tyrrhenian back-arc basin, in the Pontine Islands area, reveal a ∼NW-SE elongated morphological high, the Ventotene Volcanic Ridge (VR), located on the northern edge of the Ventotene Basin. High-resolution multibeam bathymetry, combined with magnetic data, multi- and single-channel seismic profiles, and ROV dives, suggest that VR results from aggregation of a series of volcanic edifices. The summit of these volcanoes is flat and occurs at about 170 m water depth. Given their depths, we propose that flat morphologies were probably caused by surf erosion during Quaternary glacial sea level lowstands. Seismic stratigraphy together with magnetic data suggest that the volcanic activity in this area is older than 190–130 ka age and may be coeval with that of Ventotene Island (Middle Pleistocene). The submarine volcanoes, located 25 km north of Ventotene, are part of a ∼E-W regional volcanic alignment and extend the Pontine volcanism landward toward the Gaeta bay. Integration of structural data from multichannel seismic profiles in this sector of the eastern Tyrrhenian margin indicates that several normal and/or transtensional faults, striking WNW-ESE, NNW-SSE, and NE-SW, offset the basement and form alternating structural highs and depressions filled by thick, mostly undeformed, sedimentary units. Arc-related magmatism is widespread in the study area, where the VR is placed at the hangingwall of the west-directed Apennines subduction zone, which is undergoing tensional and transtensional tectonics. Bathymetric and topographic evidence shows that VR lies in between a major NE-SW trending escarpment east of Ponza and a NE-SW trending graben southwest of the Roccamonfina volcano, a NE-SW transfer zone that accommodate the extension along this segmented portion of the margin. This suggests that the interaction between NE-SW and NW-SE trending fault systems acts as a structural control on location of eruptive centers, given that main volcanic edifices develop along the NW-SE direction, compatible with the extensional setting of the Tyrrhenian basin.
    Description: Published
    Description: 86
    Description: 3A. Geofisica marina
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-15
    Description: Climate change investigation, protection of marine ecosystems and mitigation of natural risks are the main research objectives of the Levante Canyon Mooring (LCM), a deep submarine multidisciplinary observatory, installed in September 2019 in the Eastern Ligurian Sea (Lat 44°05.443'N, Long 009°29.900'E at 608 m depth), inside the Pelagos Sanctuary. The observatory consists of a stand-alone station, with an instrumented mooring line ending with a submerged buoy. It operates in delayed-mode and is equipped with sensors that measure physical and biogeochemical parameters continuously and it is expected to provide data in the long-term. Temperature and salinity monitoring is carried out at three depth levels (about 80, 335 and 580 m depth), while turbidity is recorded at 580 m depth. LCM is also equipped with a sediment trap and two acoustic current profilers, able to measure direction and speed of currents in nearly the entire water column.Data will be used to measure flux of sediments, nutrients and organic matter and to better understand the hydrodynamic and physical conditions of the Levante Canyon, which hosts valuable and vulnerable ecosystems, such as the deep-living cold-water corals, identified by IIM and ENEA in 2014, near the LCM mooring site. The LCM site is also located in an area where surface currents are monitored in near-real time by the CNR's High Frequency Radar network, allowing data integration from multiplatform observations.The project, co-financed by the Liguria Region, is coordinated by the DLTM in strict collaboration, in terms of human resources, infrastructures and instruments with the associated public research bodies (CNR, ENEA, INGV) and with the IIM. The project also includes the next deployment of a cabled station in the Gulf of La Spezia (10 m depth, less than 100 m far from the coast) that will monitor the gravimetric field, temperature and marine current. The main objective of the coastal station is to provide a test site for new instruments and sensors.
    Description: Published
    Description: Online
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Keywords: Eastern Ligurian Sea ; LabMARE ; multidisciplinary observatory
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Durante la Campagna Oceanografica Ver2010, effettuata nel mese di Maggio 2010, sono stati acquisiti due set di dati geomagnetici marini in alta risoluzione relativi alle aree del Mt. Vercelli (Mar Tirreno Centrale) e del Golfo di Napoli. Tale attività di ricerca è stata resa possibile grazie alla collaborazione tra l’Istituto Nazionale di Geofisica e Vulcanologia (INGV) e l’Istituto Idrografico della Marina (IIM) in forza di un accordo di cooperazione “Co.Na.Ge.M” (Coordinamento Nazionale per la Geofisica Marina). I due rilievi sono stati svolti mediante l’impiego della Nave Idro-oceanografica “Aretusa”, unità navale dell’Istituto Idrografico della Marina con scafo a catamarano in vetroresina e, pertanto, particolarmente adatta a rilievi di tipo geomagnetico. Il survey geofisico del seamount Vercelli rientra nel Progetto TySec – Prin 2007 (Università degli Studi di Genova, Università Politecnica delle Marche e INGV) ed è finalizzato alla valutazione delle caratteristiche geologiche, morfologiche e idrodinamiche dell’area del seamount . I dati geomagnetici marini del Golfo di Napoli vanno ad integrare il precedente data-set acquisito nel maggio 2008 e permettono nel contempo di definire una nuova mappa in alta risoluzione del golfo.
    Description: Published
    Description: Prato
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: restricted
    Keywords: Marine Geophysics ; Magnetic anomaly ; Tyrrhenian Sea ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-09-03
    Description: Since the Tortonian, the geodynamic evolution of the Tyrrhenian Sea has been driven by an eastward roll-back of the entire Apennine subduction system, triggering distinct episodes of back-arc basin formation with spots of oceanic crust. Major structural differences are observed between northern and southern portions of the Tyrrhenian Sea, reflecting two distinct evolution stages of the Ionian slab retreat. In the central portion of the Tyrrhenian Sea, the seafloor morphology is characterized by a set of magmatic intrusions and structural highs associated to an E–W magnetic lineament along the 41st geographical parallel. The Vercelli seamount represents one example of structural highs correlated to Miocene magmatic episodes along the 41st parallel zone. In this study, we discuss the results of new high resolution magnetic data and morphological mapping of the Vercelli seamount acquired during the VER2010 cruise. The seamount represents the relict part of a granitic intrusion emplaced during the Tortonian phase of Tyrrhenian rifting. Tectonic and deep-sea erosive processes have jointly modified the seamount structure that can be observed nowadays. Cumulative gradient analysis highlights an asymmetric morphology of the flanks as a result of erosive action of opposite water mass gyres which modelled the southern portion of the seamount. The joint interpretation of magnetic and bathymetric datasets identifies a high magnetized source laying close to the base of the seamount and located in correspondence to a small basin. This structure has been modelled as a post-Tortonian lava sequence emplaced between structural highs in correspondence of N–S elongated flat sedimentary basin. Modelling of new geophysical data highlights the relationship between crustal setting and magnetic evidences of the central Tyrrhenian Sea, providing a new interpretation of the 41st magnetic lineament.
    Description: Published
    Description: 835-849
    Description: 7T. Struttura della Terra e geodinamica
    Description: 3A. Geofisica marina
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-07
    Description: Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.
    Description: Published
    Description: 1451
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3A. Geofisica marina
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-12-05
    Description: High-resolution seismic reflection, magnetic and gravity data, acquired offshore of Etna volcano, provide a new insight to understanding the relationship between tectonics and spatial-temporal evolution of volcanism. The Timpe Plateau, a structural high pertaining to the Hyblean foreland domain, located offshore of southeastern Mt. Etna, is speckled by volcanics and strongly affected by strike-slip tectonics. Transpressive deformation produced a push-up and a remarkable shortening along WNW-ESE to NW-SE trending lineaments. Fault segments, bounding basinal areas, show evidence of positive tectonic inversion, suggesting a former transtensive phase. Transtensive tectonics favoured the emplacement of deep magmatic intrusive bodies and Plio-Quaternary scattered volcanics through releasing zones. The continuing of wrench tectonics along different shear zones led to the migration of transtensive regions in the Etna area and the positive inversion of the former ones, where new magma ascent was hampered. This process caused the shifting of volcanism firstly along the main WNW-ESE trending "Southern Etna Shear Zone", then towards the Valle del Bove and finally up to the present-day stratovolcano.
    Description: Published
    Description: 12125
    Description: 1T. Struttura della Terra
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: Geodynamics ; Geophysics ; 04.06. Seismology ; Tectonics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...