GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    WMO
    In:  In: Report of the 2006 Assessment of the Scientific Assessment Panel : SCIENTIFIC ASSESSMENT OF OZONE DEPLETION: 2006 - Pursuant to Article 6 of the Montreal Protocol on Substances that Deplete the Ozone Layer. World Meteorological Organization Global Ozone Research and Monitoring Project, 50 . WMO, pp. 1-53.
    Publication Date: 2012-09-07
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1463
    Keywords: Cobalt-induced epilepsy ; rat cerebral cortex ; noradrenaline ; ionophoresis ; adrenoceptor binding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Several studies indicate that brain noradrenaline (NA) depletion facilitates the occurrence of epileptogenic syndromes in various animal models. In cobalt-induced epilepsy in the rat, seizure activity is associated with a cortical NA denervation. In order to search for cortical adrenoceptor modifications, inonophoretic studies and adrenoceptor binding assays were performed. At the period of maximal seizure activity, there was a significant supersensitivity of cortical neurons to the ionophoretic application of NA. An increase in the density ofβ-adrenoceptor binding sites was observed. No modification inα 1- andα 2-adrenoceptor binding sites was found. This suggests that in cobalt-induced epilepsy there is a denervation supersensitivity which rests on a selective involvement ofβ-adrenoceptors.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 81 (1990), S. 25-34 
    ISSN: 1432-1106
    Keywords: Spinal cord ; Transplants ; Recovery of function ; Development ; Locomotion ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Fetal spinal cord transplants placed into the site of a neonatal spinal cord lesion alter the response of immature CNS neurons to injury. The transplants prevent the retrograde cell death of immature axotomized neurons and support the growth of axons into and through the site of injury. In the present experiments we used a battery of locomotor tasks to determine if these transplants are also capable of promoting the recovery of motor function after spinal cord injury at birth. Embryonic (E14) spinal cord transplants were placed into the site of a spinal cord “over-hemisection” in rat pups. Three groups of animals were used: 1) normal control animals, 2) animals with a spinal cord hemisection only, and 3) animals with a spinal cord transplant at the site of the hemisection. Eight to twelve weeks later, the animals were trained and videotaped while crossing runways requiring accurate foot placement and footprinted while walking on a treadmill. The videotapes and footprints were analyzed to obtain quantitative measures of locomotor function. Footprint analysis revealed that the animals' base of support during locomotion was increased by a neonatal hemisection. The base of support in animals with transplants was similar to control values. Animals with a hemisection rotated their hindlimbs further laterally than did control animals during locomotion. A transplant at the site of injury modified this response. Normal animals were able to cross a grid runway quickly with only a few errors. In contrast, animals with a hemisection took a longer time and made more errors while crossing. The presence of a transplant at the site of injury enabled the animals to cross the grid more quickly and to make fewer errors than the animals with a hemisection only. Animals that received the transplants demonstrated qualitative and quantitative improvements in several parameters of locomotion. Spinal cord transplants at the site of neonatal spinal cord injury result in enhanced sparing or recovery of motor function. We suggest that this transplant induced recovery of function is a consequence of the anatomical plasticity elicited by the transplants.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...