GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Huang, J., Pickart, R. S., Huang, R. X., Lin, P., Brakstad, A., & Xu, F. Sources and upstream pathways of the densest overflow water in the Nordic Seas. Nature Communications, 11(1), (2020): 5389, doi:10.1038/s41467-020-19050-y.
    Description: Overflow water from the Nordic Seas comprises the deepest limb of the Atlantic Meridional Overturning Circulation, yet questions remain as to where it is ventilated and how it reaches the Greenland-Scotland Ridge. Here we use historical hydrographic data from 2005-2015, together with satellite altimeter data, to elucidate the source regions of the Denmark Strait and Faroe Bank Channel overflows and the pathways feeding these respective sills. A recently-developed metric is used to calculate how similar two water parcels are, based on potential density and potential spicity. This reveals that the interior of the Greenland Sea gyre is the primary wintertime source of the densest portion of both overflows. After subducting, the water progresses southward along several ridge systems towards the Greenland-Scotland Ridge. Kinematic evidence supports the inferred pathways. Extending the calculation back to the 1980s reveals that the ventilation occurred previously along the periphery of the Greenland Sea gyre.
    Description: Funding for the study was provided by the US National Science Foundation under grants OCE-1558742 (J.H., R.P.) and OCE-1259618 (P.L.); the Bergen Research Foundation under grant BFS2016REK01 (A.B.); and the National Natural Science Foundation of China No. 41576018 (F.X.) and 41606020 (F.X.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Renfrew, I. A., Pickart, R. S., Vage, K., Moore, G. W. K., Bracegirdle, T. J., Elvidge, A. D., Jeansson, E., Lachlan-Cope, T., McRaven, L. T., Papritz, L., Reuder, J., Sodemann, H., Terpstra, A., Waterman, S., Valdimarsson, H., Weiss, A., Almansi, M., Bahr, F., Brakstad, A., Barrell, C., Brooke, J. K., Brooks, B. J., Brooks, I. M., Brooks, M. E., Bruvik, E. M., Duscha, C., Fer, I., Golid, H. M., Hallerstig, M., Hessevik, I., Huang, J., Houghton, L., Jonsson, S., Jonassen, M., Jackson, K., Kvalsund, K., Kolstad, E. W., Konstali, K., Kristiansen, J., Ladkin, R., Lin, P., Macrander, A., Mitchell, A., Olafsson, H., Pacini, A., Payne, C., Palmason, B., Perez-Hernandez, M. D., Peterson, A. K., Petersen, G. N., Pisareva, M. N., Pope, J. O., Seidl, A., Semper, S., Sergeev, D., Skjelsvik, S., Soiland, H., Smith, D., Spall, M. A., Spengler, T., Touzeau, A., Tupper, G., Weng, Y., Williams, K. D., Yang, X., & Zhou, S. The Iceland Greenland Seas Project. Bulletin of the American Meteorological Society, 100(9), (2019): 1795-1817, doi:10.1175/BAMS-D-18-0217.1.
    Description: The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.
    Description: The IGP has received funding from the U.S. National Science Foundation: Grant OCE-1558742; the U.K.’s Natural Environment Research Council: AFIS (NE/N009754/1); the Research Council of Norway: MOCN (231647), VENTILATE (229791), SNOWPACE (262710) and FARLAB (245907); and the Bergen Research Foundation (BFS2016REK01). We thank all those involved in the field work associated with the IGP, particularly the officers and crew of the Alliance, and the operations staff of the aircraft campaign.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davila, X., Gebbie, G., Brakstad, A., Lauvset, S. K., McDonagh, E. L., Schwinger, J., & Olsen, A. How Is the ocean anthropogenic carbon reservoir filled? Global Biogeochemical Cycles, 36(5), (2022): e2021GB007055, https://doi.org/10.1029/2021GB007055.
    Description: About a quarter of the total anthropogenic CO2 emissions during the industrial era has been absorbed by the ocean. The rate limiting step for this uptake is the transport of the anthropogenic carbon (Cant) from the ocean mixed layer where it is absorbed to the interior ocean where it is stored. While it is generally known that deep water formation sites are important for vertical carbon transport, the exact magnitude of the fluxes across the base of the mixed layer in different regions is uncertain. Here, we determine where, when, and how much Cant has been injected across the mixed-layer base and into the interior ocean since the start of the industrialized era. We do this by combining a transport matrix derived from observations with a time-evolving boundary condition obtained from already published estimates of ocean Cant. Our results show that most of the Cant stored below the mixed layer are injected in the subtropics (40.1%) and the Southern Ocean (36.0%), while the Subpolar North Atlantic has the largest fluxes. The Subpolar North Atlantic is also the most important region for injecting Cant into the deep ocean with 81.6% of the Cant reaching depths greater than 1,000 m. The subtropics, on the other hand, have been the most efficient in transporting Cant across the mixed-layer base per volume of water ventilated. This study shows how the oceanic Cant uptake relies on vertical transports in a few oceanic regions and sheds light on the pathways that fill the ocean Cant reservoir.
    Description: X. Davila was supported by a PhD research fellowship from the University of Bergen. G. Gebbie was supported by U.S. NSF Grant 88075300. A. Brakstad was supported by the Trond Mohn Foundation under grant agreement BFS2016REK01. E. L. McDonagh was supported by UKRI grants Atlantic Biogeochemical fluxes (ref no. NE/M005046/2) and TICTOC:Transient tracer-based Investigation of Circulation and Thermal Ocean Change (ref no. NE/P019293/2). A. Olsen and S. K. Lauvset appreciate support from the Research Council of Norway (ICOS-Norway, project number 245972). J. Schwinger acknowledges support by the Research Council of Norway through project INES (project number 270061). Supercomputer time and storage resources were provided by the The Norwegian e-infrastructure for Research Education (UNINETT Sigma2, projects nn2980k and ns2980k).
    Keywords: Anthropogenic carbon ; Transport matrix ; Mixed-layer ; Observations ; Fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XV/2; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J008; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS55; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 873200 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XVII/1; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J011; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS59; PS59/042-3; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 403184 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XVI/1; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J009; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS57/108, PS59/042-2; PS57 ARKTIEF; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1483876 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XVI/1; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J010; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS57/109, PS59/037-1; PS57 ARKTIEF; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1833328 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XVII/1; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J012; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS59; PS59/041; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 817668 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XVII/1; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J013; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS59; PS59/037-2; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 2463680 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-XIX/2; AWI_PhyOce; CTD; DATE/TIME; DEPTH, water; Gear identification number; J018; MOOR; Mooring; North Greenland Sea; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS64; PS64/187-2; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 2356856 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...