GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Planes, S., Allemand, D., Agostini, S., Banaigs, B., Boissin, E., Boss, E., Bourdin, G., Bowler, C., Douville, E., Flores, J. M., Forcioli, D., Furla, P., Galand, P. E., Ghiglione, J. F., Gilson, E., Lombard, F., Moulin, C., Pesant, S., Poulain, J., Reynaud, S., Romac, S., Sullivan, M. B., Sunagawa, S., Thomas, O. P., Trouble, R., de Vargas, C., Thurber, R. V., Voolstra, C. R., Wincker, P., Zoccola, D., the Tara Pacific Consortium. The Tara Pacific expedition-A pan-ecosystemic approach of the "-omics" complexity of coral reef holobionts across the Pacific Ocean. Plos Biology, 17(9),(2019): e3000483, doi: 10.1371/journal.pbio.3000483.
    Description: Coral reefs are the most diverse habitats in the marine realm. Their productivity, structural complexity, and biodiversity critically depend on ecosystem services provided by corals that are threatened because of climate change effects—in particular, ocean warming and acidification. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates, associated viruses, bacteria, and other microeukaryotes. In particular, the mandatory photosymbiosis with microalgae of the family Symbiodiniaceae and its consequences on the evolution, physiology, and stress resilience of the coral holobiont have yet to be fully elucidated. The functioning of the holobiont as a whole is largely unknown, although bacteria and viruses are presumed to play roles in metabolic interactions, immunity, and stress tolerance. In the context of climate change and anthropogenic threats on coral reef ecosystems, the Tara Pacific project aims to provide a baseline of the “-omics” complexity of the coral holobiont and its ecosystem across the Pacific Ocean and for various oceanographically distinct defined areas. Inspired by the previous Tara Oceans expeditions, the Tara Pacific expedition (2016–2018) has applied a pan-ecosystemic approach on coral reefs throughout the Pacific Ocean, drawing an east–west transect from Panama to Papua New Guinea and a south–north transect from Australia to Japan, sampling corals throughout 32 island systems with local replicates. Tara Pacific has developed and applied state-of-the-art technologies in very-high-throughput genetic sequencing and molecular analysis to reveal the entire microbial and chemical diversity as well as functional traits associated with coral holobionts, together with various measures on environmental forcing. This ambitious project aims at revealing a massive amount of novel biodiversity, shedding light on the complex links between genomes, transcriptomes, metabolomes, organisms, and ecosystem functions in coral reefs and providing a reference of the biological state of modern coral reefs in the Anthropocene.
    Description: We are keen to thank the commitment of the people and the following institutions for their financial and scientific support that made this singular expedition possible: CNRS, PSL, CSM, EPHE, Genoscope/CEA, Inserm, Université Cote d’Azur, ANR, agnès b., UNESCO-IOC, the Veolia Environment Foundation, Région Bretagne, Serge Ferrari, Billerudkorsnas, Amerisource Bergen Company, Lorient Agglomeration, Oceans by Disney, the Prince Albert II de Monaco Foundation, L’Oréal, Biotherm, France Collectivités, Kankyo Station, Fonds Français pour l’Environnement Mondial (FFEM), Etienne BOURGOIS, and the Tara Ocean Foundation teams and crew. Tara Pacific would not exist without the continuous support of the participating institutes. This study has been conducted using E.U. Copernicus Marine Service Information and Mercator Ocean products. We acknowledged funding from the Investissement d’avenir projects France Génomique (ANR-10-INBS-09) and OCEANOMICS (ANR-11-BTBR-0008). RVT was funded by a Dimensions of Biodiversity NSF grant (#1442306) for this work. SS is supported by the ETH Zurich and Helmut Horten Foundation. FL is supported by Sorbonne Université, Institut Universitaire de France, and the Fondation CA-PCA. Finally, we thank the ANR for funding the project CORALGENE, which will support the work the Tara Pacific program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Boissin, E., Neglia, V., Baksay, S., Micu, D., Bat, L., Topaloglu, B., Todorova, V., Panayotova, M., Kruschel, C., Milchakova, N., Voutsinas, E., Beqiraj, S., Nasto, I., Aglieri, G., Taviani, M., Zane, L., & Planes, S. Chaotic genetic structure and past demographic expansion of the invasive gastropod Tritia neritea in its native range, the Mediterranean Sea. Scientific Reports, 10(1), (2020): 21624. doi:10.1038/s41598-020-77742-3.
    Description: To better predict population evolution of invasive species in introduced areas it is critical to identify and understand the mechanisms driving genetic diversity and structure in their native range. Here, we combined analyses of the mitochondrial COI gene and 11 microsatellite markers to investigate both past demographic history and contemporaneous genetic structure in the native area of the gastropod Tritia neritea, using Bayesian skyline plots (BSP), multivariate analyses and Bayesian clustering. The BSP framework revealed population expansions, dated after the last glacial maximum. The haplotype network revealed a strong geographic clustering. Multivariate analyses and Bayesian clustering highlighted the strong genetic structure at all scales, between the Black Sea and the Adriatic Sea, but also within basins. Within basins, a random pattern of genetic patchiness was observed, suggesting a superimposition of processes involving natural biological effects (no larval phase and thus limited larval dispersal) and putative anthropogenic transport of specimens. Contrary to the introduced area, no isolation-by-distance patterns were recovered in the Mediterranean or the Black Seas, highlighting different mechanisms at play on both native and introduced areas, triggering unknown consequences for species’ evolutionary trajectories. These results of Tritia neritea populations on its native range highlight a mixture of ancient and recent processes, with the effects of paleoclimates and life history traits likely tangled with the effects of human-mediated dispersal.
    Description: This project was funded by the European FP7 CoCoNet project (Ocean.2011-4, grant agreement #287844) and we are grateful to the whole CoCoNET consortium. We are grateful to the following people for their critical help with logistics and field work ‘Antheus srl (Lecce, Italy)’; S Bevilacqua, G Guarnieri, S Fraschetti and T Terlizzi (University of Salento, Italy); L Angeletti and M Sigovini (ISMAR, Italy); D Shamrey (IBSS, Sevastopol); A Anastasopoulou, MA Pancucci-Papadopoulou and S Reizopoulou (HCMR, Greece) and E Hajdëri (Catholic University ‘Our Lady of Good Counsel’, Tirana). Thank you to J Almany for English corrections. This is ISMAR-CNR scientific contribution n1987. E Boissin was supported by a European Marie Curie postdoctoral fellowship MC-CIG-618480.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gorsky, G., Bourdin, G., Lombard, F., Pedrotti, M. L., Audrain, S., Bin, N., Boss, E., Bowler, C., Cassar, N., Caudan, L., Chabot, G., Cohen, N. R., Cron, D., De Vargas, C., Dolan, J. R., Douville, E., Elineau, A., Flores, J. M., Ghiglione, J. F., Haentjens, N., Hertau, M., John, S. G., Kelly, R. L., Koren, I., Lin, Y., Marie, D., Moulin, C., Moucherie, Y., Pesant, S., Picheral, M., Poulain, J., Pujo-Pay, M., Reverdin, G., Romac, S., Sullivan, M. B., Trainic, M., Tressol, M., Trouble, R., Vardi, A., Voolstra, C. R., Wincker, P., Agostini, S., Banaigs, B., Boissin, E., Forcioli, D., Furla, P., Galand, P. E., Gilson, E., Reynaud, S., Sunagawa, S., Thomas, O. P., Thurber, R. L. V., Zoccola, D., Planes, S., Allemand, D., Karsenti, E. Expanding Tara oceans protocols for underway, ecosystemic sampling of the ocean-atmosphere interface during Tara Pacific expedition (2016-2018). Frontiers in Marine Science, 6, (2019): 750, doi: 10.3389/fmars.2019.00750.
    Description: Interactions between the ocean and the atmosphere occur at the air-sea interface through the transfer of momentum, heat, gases and particulate matter, and through the impact of the upper-ocean biology on the composition and radiative properties of this boundary layer. The Tara Pacific expedition, launched in May 2016 aboard the schooner Tara, was a 29-month exploration with the dual goals to study the ecology of reef ecosystems along ecological gradients in the Pacific Ocean and to assess inter-island and open ocean surface plankton and neuston community structures. In addition, key atmospheric properties were measured to study links between the two boundary layer properties. A major challenge for the open ocean sampling was the lack of ship-time available for work at “stations”. The time constraint led us to develop new underway sampling approaches to optimize physical, chemical, optical, and genomic methods to capture the entire community structure of the surface layers, from viruses to metazoans in their oceanographic and atmospheric physicochemical context. An international scientific consortium was put together to analyze the samples, generate data, and develop datasets in coherence with the existing Tara Oceans database. Beyond adapting the extensive Tara Oceans sampling protocols for high-resolution underway sampling, the key novelties compared to Tara Oceans’ global assessment of plankton include the measurement of (i) surface plankton and neuston biogeography and functional diversity; (ii) bioactive trace metals distribution at the ocean surface and metal-dependent ecosystem structures; (iii) marine aerosols, including biological entities; (iv) geography, nature and colonization of microplastic; and (v) high-resolution underway assessment of net community production via equilibrator inlet mass spectrometry. We are committed to share the data collected during this expedition, making it an important resource important resource to address a variety of scientific questions.
    Description: We are thankful for the commitment of the people and the following institutions, for their financial and scientific support that made this singular expedition possible: CNRS, PSL, CSM, EPHE, Genoscope/CEA, Inserm, Université Cote d’Azur, ANR, the Tara Ocean Foundation and its partners agnès b., UNESCO-IOC, the Veolia Environment Foundation, Région Bretagne, Serge Ferrari, Billerudkorsnas, Amerisource Bergen Company, Altran, Lorient Agglomeration, Oceans by Disney, the Prince Albert II de Monaco Foundation, L’Oréal, Biotherm, France Collectivités, Kankyo Station, Fonds Français pour l’Environnement Mondial (FFEM), Etienne Bourgois, the Tara Ocean Foundation teams and crew. Tara Pacific would not exist without the continuous support of the participating institutes. This study has been conducted using E.U. Copernicus Marine Service Information and Mercator Ocean products. We acknowledge funding from the Investissement d’avenir project France Génomique (ANR-10-INBS-09). FL is supported by Sorbonne Université, Institut Universitaire de France and the Fondation CA-PCA. The in-line and atmospheric optics dataset was collected and analyzed with support from NASA Ocean Biology and Biogeochemistry program under grants NNX13AE58G and NNX15AC08G to University of Maine. MF, IK, and AV are supported by a research grant from Scott Jordan and Gina Valdez, the De Botton for Marine Science, the Yeda-Sela center for Basic research, and the Sustainability and Energy Research Initiative (SAERI). NCo was supported by a grant from the Simons Foundation/SFARI (544236). NCa and YL were supported by the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19) and co-funded by a grant from the French government under the program “Investissements d’Avenir.” The support of Pr. Alan Fuchs, President of CNRS, was crucial for the success of the surface sampling undertaken during the Tara Pacific expedition. We thank A. Gavilli from TECA Inc. France, and E. Tanguy and D. Delhommeau from the Institut de la Mer, Villefranche-sur-Mer for the helpful collaboration in the conception of the High Speed Net and the Dolphin systems. This publication is number 2 of the Tara Pacific Consortium.
    Keywords: Neuston/plankton genomics/taxonomy/imaging ; Aerosols ; NCP ; IOP ; Trace metals ; Microplastic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Boissin, E., Thorrold, S. R., Braun, C. D., Zhou, Y., Clua, E. E., & Planes, S. Contrasting global, regional and local patterns of genetic structure in gray reef shark populations from the Indo-Pacific region. Scientific Reports, 9(1), (2019): 15816. doi: 10.1038/s41598-019-52221-6.
    Description: Human activities have resulted in the loss of over 90% of sharks in most ocean basins and one in four species of elasmobranch are now listed at risk of extinction by the IUCN. How this collapse will affect the ability of populations to recover in the face of continued exploitation and global climate change remains unknown. Indeed, important ecological and biological information are lacking for most shark species, particularly estimates of genetic diversity and population structure over a range of spatial scales. Using 15 microsatellite markers, we investigated genetic diversity and population structure in gray reef sharks over their Indo-Pacific range (407 specimens from 9 localities). Clear genetic differentiation was observed between the Indian and the Pacific Ocean specimens (FST = 0.145***). Further differentiation within the Pacific included a West and East cleavage as well as North-Central and South-Central Pacific clusters. No genetic differentiation was detected within archipelagos. These results highlight the legacy of past climate changes and the effects of large ocean expanses and circulation patterns on contrasting levels of connectivity at global, regional and local scales. Our results indicate a need for regional conservation units for gray reef sharks and pinpoint the isolation and vulnerability of their French Polynesian population.
    Description: All of the following provided funding for the research presented here (no particular order after the first organization): Laboratoire d’Excellence CORAIL, Ministère de l’Ecologie du Développement Durable et de l’Energie, Ministère de l’Outre-Mer, Fonds Pacifique, IFRECOR, Délégation à la recherche de Polynésie, Agence Nationale de la Recherche and the Robertson Foundation. We also thank Andrew Chin, Jennifer Ovenden, Mark Meekan and Conrad Speed, Mael Imirizaldu, David Lecchini, Patrick Plantard, Jonathan Werry, Johann Mourier, Thomas Vignaud, Matis Jorge, Noémie Jublier and several other students for providing samples or for assistance with sampling. We are grateful to three anonymous reviewers who provided helpful comments.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-06
    Description: The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean, and sampled the surface of oceanic waters at 249 locations, resulting in the collection of nearly 58,000 samples. The expedition was designed to systematically study corals, fish, plankton, and seawater, and included the collection of samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide the continuous dataset originating from the thermosalinograph [TSG] instrument acquiring continuously during the full course of the campaign. Surface seawater was pumped continuously through a hull inlet located 1.5 m under the waterline using a membrane pump (10 LPM; Shurflo), circulated through a vortex debubbler, a flow meter, and distributed to a number of flow-through instruments. A thermosalinograph [TSG] (SeaBird Electronics SBE45/SBE38), measured temperature, conductivity, and thus salinity. Salinity measurements where intercalibrated against unfiltered seawater samples [SAL] taken every week from the surface ocean, and corrected for any observed bias. Moreover, temperature and salinity measurements were validated against Argo floats data collocated with Tara.
    Keywords: CTD, Sea-Bird, SBE45/SBE38; DATE/TIME; Fondation Tara Expeditions; FondTara; LATITUDE; LONGITUDE; Pacific Ocean; Salinity; SV Tara; TARA_2016-2018; Tara_Pacific; TARA_PACIFIC_2016-2018; Tara Pacific Expedition; Temperature; Temperature, water; UMS; Underway, multiple sensors
    Type: Dataset
    Format: text/tab-separated-values, 1770033 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-06
    Description: The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean, and sampled the surface of oceanic waters at 249 locations, resulting in the collection of nearly 58,000 samples. The expedition was designed to systematically study corals, fish, plankton, and seawater, and included the collection of samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide the continuous dataset originating from an optical particle counter ([EDM]; EDM180 GRIMM Aerosol Technik Ainring GmbH & Co. KG, Ainring, Germany) instrument acquiring continuously during the full course of the campaign. Aerosols pumped through one of the ([MAST-PUMP]) inlets were channeled through a conductive tubing of 1.9 cm inner diameter to four parallel 47mm filter holders installed in the rear hold using a vacuum pump (Diaphragm pumpME16 NT, VACUUBRAND BmbH & Co KG, Wertheim, Germany) at a minimum flow rate of 30 lpm (20lpm prior to may 2016). Air was conducted to an optical particle counter ([EDM]; EDM180 GRIMM Aerosol Technik Ainring GmbH & Co. KG, Ainring, Germany) measuring and counting particles in the size range 0.25 - 32 µm as a 30 minutes average, both the particle concentration (nb cm-3) together with its normalized size distribution (dN/dlogDp (nb cm-3 log(nm)-1) i.e., the concentration divided by the log of the width of the bin).
    Keywords: aerosol; DATE/TIME; Fondation Tara Expeditions; FondTara; LATITUDE; Log-normal particle size distribution; LONGITUDE; Optical particle counter ([EDM]; EDM180 GRIMM Aerosol Technik Ainring GmbH & Co. KG, Ainring, Germany) measuring and counting particles in 30 minutes average; Pacific Ocean; Particle concentration, standard deviation; Particle number, total; size distribution; SV Tara; TARA_2016-2018; Tara_Pacific; TARA_PACIFIC_2016-2018; Tara Pacific Expedition; UMS; Underway, multiple sensors
    Type: Dataset
    Format: text/tab-separated-values, 1851846 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-06
    Description: The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean, and sampled the surface of oceanic waters at 249 locations, resulting in the collection of nearly 58,000 samples. The expedition was designed to systematically study corals, fish, plankton, and seawater, and included the collection of samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide the continuous dataset originating from an optical particle counter ([EDM]; EDM180 GRIMM Aerosol Technik Ainring GmbH & Co. KG, Ainring, Germany) instrument acquiring continuously during the full course of the campaign. Aerosols pumped through one of the ([MAST-PUMP]) inlets were channeled through a conductive tubing of 1.9 cm inner diameter to four parallel 47mm filter holders installed in the rear hold using a vacuum pump (Diaphragm pumpME16 NT, VACUUBRAND BmbH & Co KG, Wertheim, Germany) at a minimum flow rate of 30 lpm (20lpm prior to may 2016). Air was conducted to an optical particle counter ([EDM]; EDM180 GRIMM Aerosol Technik Ainring GmbH & Co. KG, Ainring, Germany) measuring and counting particles in the size range 0.25 - 32 µm every 60 seconds.
    Keywords: aerosol; DATE/TIME; Fondation Tara Expeditions; FondTara; LATITUDE; LONGITUDE; Optical particle counter ([EDM]; EDM180 GRIMM Aerosol Technik Ainring GmbH & Co. KG, Ainring, Germany) measuring and counting particles in the size range 0.25 - 32 µm every 60 seconds; Pacific Ocean; Particle concentration, standard deviation; Particle number, total; size distribution; SV Tara; TARA_2016-2018; Tara_Pacific; TARA_PACIFIC_2016-2018; Tara Pacific Expedition; UMS; Underway, multiple sensors
    Type: Dataset
    Format: text/tab-separated-values, 30312 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-06
    Description: The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean, and sampled the surface of oceanic waters at 249 locations, resulting in the collection of nearly 58,000 samples. The expedition was designed to systematically study corals, fish, plankton, and seawater, and included the collection of samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide the continuous dataset originating from Equilibrator Inlet Mass Spectrometer [EIMS] (Pfeiffer Vacuum Quadrupole 1–100 amu) instruments acquiring continuously during the full course of the campaign. Surface seawater was pumped continuously through a hull inlet located 1.5 m under the waterline using a membrane pump (10 LPM; Shurflo), circulated through a vortex debubbler, a flow meter, and distributed to a number of flow-through instruments.
    Keywords: argon; DATE/TIME; Equilibrator Inlet Mass Spectrometry (EIMS); Fondation Tara Expeditions; FondTara; LATITUDE; LONGITUDE; Oxygen; Oxygen/Argon ratio; Pacific Ocean; SV Tara; TARA_2016-2018; Tara_Pacific; TARA_PACIFIC_2016-2018; Tara Pacific Expedition; UMS; Underway, multiple sensors
    Type: Dataset
    Format: text/tab-separated-values, 146536 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-06
    Description: The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean, and sampled the surface of oceanic waters at 249 locations, resulting in the collection of nearly 58,000 samples. The expedition was designed to systematically study corals, fish, plankton, and seawater, and included the collection of samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide the continuous dataset originating from CDOM fluorometer [WSCD] (WETLabs) instruments acquiring continuously during the full course of the campaign. Surface seawater was pumped continuously through a hull inlet located 1.5 m under the waterline using a membrane pump (10 LPM; Shurflo), circulated through a vortex debubbler, a flow meter, and distributed to a number of flow-through instruments. The CDOM fluorometer [WSCD] (WETLabs), was added to the underway system to measure the fluorescence of colored dissolved organic matter [fdom].
    Keywords: CTD, Sea-Bird; measured with Thermosalinograph (TSG) sensor; DATE/TIME; DOM; Fluorescence, dissolved organic matter; Fluorescence, dissolved organic matter, standard deviation; Fondation Tara Expeditions; FondTara; LATITUDE; LONGITUDE; Number; Pacific Ocean; Salinity; SV Tara; TARA_2016-2018; Tara_Pacific; TARA_PACIFIC_2016-2018; Tara Pacific Expedition; Temperature, water; UMS; Underway, multiple sensors; WET Labs CDOM
    Type: Dataset
    Format: text/tab-separated-values, 2740189 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-06
    Description: The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean, and sampled the surface of oceanic waters at 249 locations, resulting in the collection of nearly 58,000 samples. The expedition was designed to systematically study corals, fish, plankton, and seawater, and included the collection of samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide the continuous dataset originating from PAR sensor (Biospherical Instruments Inc. QCR-2150) acquiring continuously during the full course of the campaign and mounted at the stern of the boat (~7 m altitude).
    Keywords: CTD, Sea-Bird; measured with Thermosalinograph (TSG) sensor; DATE/TIME; Fondation Tara Expeditions; FondTara; LATITUDE; LONGITUDE; Number; Pacific Ocean; PAR; PAR sensor, Biospherical, QCR-2150; Radiation, photosynthetically active; Radiation, photosynthetically active, standard deviation; Salinity; SV Tara; TARA_2016-2018; Tara_Pacific; TARA_PACIFIC_2016-2018; Tara Pacific Expedition; Temperature, water; UMS; Underway, multiple sensors
    Type: Dataset
    Format: text/tab-separated-values, 4154275 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...