GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2019-09-23
    Description: The large recurrent areas of open water and/or thin ice (polynyas) producing cold brine-enriched waters off the fast-ice edge are evident in the Laptev Sea in winter time. A number of abrupt positively correlated transitions in temperature and salinity were recorded in the bottom and intermediate layers at a mooring station in the West New Siberian (WNS) polynya in February-March 2008. Being in the range of -0.5 degrees C and -1.6 psu these changes are induced by horizontal motions across the polynya and correspond to temperature and salinity horizontal gradients in the range of 0.3-1.0 degrees C/10 km and 1.4-3.5 psu/10 km, respectively. The events of distinct freshening and temperature decrease coincide with a northward current off the fast-ice edge, while southward currents brought saltier and warmer waters at intermediate depths. We suggest that the observed transitions are connected to altering pycnocline depths across the polynya. The source of relatively fresher waters at the intermediate depths in polynya is supposed to originate from penetrative mixing of surface low salinity waters to intermediate water depth. Several forcing processes that could be responsible for a penetrative mixing through the density interface in polynya are discussed. These are penetrative convection and shear-driven mixing that originates from two-layer water dynamics and/or baroclinic tidal motions. The heavily ridged seaward fast-ice edge could produce an additional source of turbulent mixing even through a shear-free density interface due to the increased roughness at the ice-water interface
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: This paper examines the role of atmospheric forcing in modifying the pathways of riverine water on the Laptev Sea shelf, using summer-to-winter hydrographic surveys from 2007 to 2009. Over the two consecutive winter seasons of 2007–2008 and 2008–2009 in the area of the winter coastal polynya, our data clearly link winter surface salinity fields to the previous summer conditions, with substantially different winter salinity patterns preconditioned by summer atmospheric forcing. In the summer of 2007, dominant along-shore westerly winds in the cyclonic regime force the Lena River runoff to flow eastward. In contrast, in the summer of 2008, dominant along-shore easterly winds over the East Siberian Sea and on-shore northerly winds over the Laptev Sea in the anticyclonic regime lock the riverine water in the vicinity of the Lena Delta. Over the coastal polynya area in the southeastern Laptev Sea these patterns precondition a surface salinity difference of 8–16 psu between the winters of 2008 and 2009. Overall, this indicates a residence time of at least half a year for riverine water on the Laptev Sea shelf. Future climate change associated with an enhanced summer cyclonicity over the eastern Arctic may turn more riverine water eastward along the eastern Siberian coast, resulting in weaker vertical density stratification over the Laptev Sea shelf, with possible impact on the efficiency of vertical mixing and polynya dense water production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 117 . C00G14.
    Publication Date: 2018-02-27
    Description: Enhanced semidiurnal-band velocity shear across the shelf halocline layer (SHL) was found during land-fast ice edge mooring-based acoustic Doppler current profiler (ADCP) and conductivity-temperature-depth (CTD) observations over the eastern Laptev Sea shelf (∼74°N, 128°E) in April–May 2008 and April 2009. In 2008, the major axis amplitude for the lunar semidiurnal M2tidal ellipses demonstrated intermediate maximum in the SHL at 11–13 m (15 ± 3 cm/s), gradually decreasing to subice and near-bottom layers to ∼9 ± 3 cm/s (at 7 m) and 7 ± 2 cm/s (at 19 m), respectively. In 2009, the semidiurnal tidal flow exhibited similar patterns, but velocities were reduced by about factor of 2. Our estimates of gradient Richardson numbers suggest that the velocity shear associated with semidiurnal baroclinic tidal flow may be strong enough to play a role in water mass modification, promoting shear instabilities, turbulence, and vertical mixing of seawater properties across the SHL. This suggestion is consistent with near-homogeneous water layers episodically occurring in the SHL. Differences in the background stratification and local tidal dynamics between 2008 and 2009, together with rapid responses of the semidiurnal motion to polynya openings, suggest that the baroclinic tide is locally generated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...