GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 154 (1999), S. 433-456 
    ISSN: 1420-9136
    Keywords: Key words: Fault zone properties, subduction zones, Japan trench, Middle America trench.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —Spatial variations in mechanical properties of the interplate thrust faults along the Japan and Middle America subduction zones are examined using teleseismic broadband earthquake recordings. Moment-normalized source duration is used to probe rigidity variations along the interface. We invert body waves to estimate source depth and source duration for 40 events in the Japan subduction zone and 38 events in the Middle America subduction zone. For both areas, there is a systematic decrease in source duration with increasing depth along the subduction zone interface. This is most likely a result of variation in properties of sediments on the plate contact. Variations in source duration are greatly reduced at depths greater than 18 km in both regions. Enhanced spatial heterogeneity at shallow depth may reflect variations in plate roughness, sediment distribution, permeability of the fault zone, and stress.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-08
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 108 (B10). p. 2491.
    Publication Date: 2018-05-30
    Description: The shallow seismogenic portion of subduction zones generates damaging large and great earthquakes. This study provides structural constraints on the seismogenic zone of the Middle America Trench offshore central Costa Rica and insights into the physical and mechanical characteristics controlling seismogenesis. We have located ~300 events that occurred following the MW 6.9, 20 August 1999, Quepos, Costa Rica, underthrusting earthquake using a three-dimensional velocity model and arrival time data recorded by a temporary local network of land and ocean bottom seismometers. We use aftershock locations to define the geometry and characteristics of the seismogenic zone in this region. These events define a plane dipping at 19° that marks the interface between the Cocos Plate and the Panama Block. The majority of aftershocks occur below 10 km and above 30 km depth below sea level, corresponding to 30–35 km and 95 km from the trench axis, respectively. Relative event relocation produces a seismicity pattern similar to that obtained using absolute locations, increasing confidence in the geometry of the seismogenic zone. The aftershock locations spatially correlate with the downdip extension of the oceanic Quepos Plateau and reflect the structure of the main shock rupture asperity. This strengthens an earlier argument that the 1999 Quepos earthquake ruptured specific bathymetric highs on the downgoing plate. We believe that subduction of this highly disrupted seafloor has established a set of conditions which presently limit the seismogenic zone to be between 10 and 35 km below sea level.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2016-05-24
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-04
    Description: Dynamic earthquake triggering, the process through which stresses transmitted through the passage of seismic waves can trigger remote faults to fail, has been shown to be fairly common throughout the globe and especially in seismically active areas of high heat flow and geothermal activity. We explore the possibility of dynamic earthquake triggering around the Socorro magma body, a feature within the Rio Grande rift in New Mexico that exhibits high heat flow and heightened seismicity. Because the area fits the environment type in which triggering preferentially occurs, we examine 319 global mainshocks with M w ≥6.0 for the possibility of increased seismicity rates following the passage of the mainshock waves. We examine local event locations and origin times relative to mainshock phase arrivals for patterns distinguishing triggering mainshocks from nontriggering mainshocks. We find a small triggering response during the time period analyzed, unlike following the 2002 Denali fault earthquake (DFE). This small response corresponds to smaller peak dynamic stresses than are found in other triggering studies (〈0.01 MPa versus 0.01–1 MPa). The larger response following the DFE is likely because the earthquake itself was large ( M w 〉7.0), at a regional to small teleseismic distance (〈~40°), and with strong rupture directivity toward New Mexico, and the mainshocks examined in this study do not fit all three conditions.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...