GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Plant Science Letters 8 (1977), S. 257-260 
    ISSN: 0304-4211
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0022-328X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0040-4020
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 85 (1979), S. 241-251 
    ISSN: 1573-8469
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Samenvatting Zeer uiteenlopende plantevirussen kunnen goed worden bewaard in bladmateriaal van geïnfecteerde planten dat is gedroogd en bewaard boven CaCl2. Bij rechtstreekse elektronenmicroscopische toetsing van 66 monsters met verschillende isolaten van 43 virussen konden in 53 monsters gemakkelijk virusdeeltjes worden waargenomen (Tabel 1 en Fig. 1 en 2). Meestal lukte dit met fosforwolfraamzuur pH 6,5 dat doorgaans voor in ruw plantesap voorkomende virussen wordt gebruikt. Bij luzernemozaïekvirus en komkommermozaïek virus gelukte dit alleen maar bij lagere pH (3,0 en 4,0). Ook het tomate-aspermievirus was dan veel gemakkelijker aantoombaar. Methylaminewolfraamzuur gaf geen beter resultaat. Draden van bonerolmozaïekvirus en van ‘cowpea aphid-borne mosaic virus’ en bolletjes van ‘cowpea mosaic virus’ waren snel waarneembaar in elektronenmicroscopische preparaten gemaakt van bladmateriaal van recent uit Marokko en Tanzania ontvangen monsters. ‘Cowpea mosaic virus’, tuinboneverwelkingsvirus en komkommermozaïekvirus konden eveneens gemakkelijk en snel serologisch worden aangetoond in met bufferoplossing vermalen droog blad van respectievelijk ‘cowpea’, erwt en tabak. Het laatstgenoemde, reeds 20 1/2 jaar geleden gedroogde bladmateriaal, bleek in vergelijking met pas geïnoculeerd vers blad van komkommer enChenopodium quinoa zelfs zeer veel serologisch actief virusmateriaal te bevatten (Fig. 3). De beschreven waarnemingen bevestigen nogmaals de waarde van de toegepaste methode van virusbewaring en tonen aan dat het mogelijk is vele virussen te herkennen in van elders ontvangen gedroogde bladmonsters, zonder het risico te lopen van virusontsnapping, zoals altijd aanwezig bij werk met toetsplanten in de kas.
    Notes: Abstract Most of 43 viruses could easily be detected directly in 53 out of 66 leaf samples dried and stored over CaCl2 for varying periods of time up to 20 1/2 years. Detection usually was with PTA pH 6.5, but alfalfa mosaic, cucumber mosaic and tomato aspermy viruses required PTA pH 3.0 to 4.0. Bean common mosaic, cowpea aphid-borne mosaic and cowpea mosaic viruses were also easily observed in newly dehydrated samples obtained for diagnosis from Morocco and Tanzania. Broad bean wilt virus, cowpea mosaic virus and cucumber mosaic virus were detected with agar gel-diffusion tests in dry leaf material ground in buffer. This serological assay demonstrated a high concentration of cucumber mosaic virus in leaf material dried over CaCl2 20 years ago. This paper further coroborates the value of the CaCl2 method of dehydration and storage of plant viruses in leaf material.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC3Journal of Geophysical Research: Oceans, 124(12), pp. 9404-9416, ISSN: 2169-9275
    Publication Date: 2020-07-24
    Description: We investigate the origin of fresh water on the shelves near Cape Farewell (south Greenland) using sections of three hydrographic cruises in May (HUD2014007) and June 2014 (JR302 and Geovide). We partition the fresh water between meteoric water sources and sea ice melt or brine formation using the δ18O of sea water. The sections illustrate the presence of the East Greenland Coastal Current (EGCC) close to shore east of Cape Farewell. West of Cape Farewell, it partially joins the shelf break, with a weaker near‐surface remnant of the EGCC observed on the shelf southwest and west of Cape Farewell. The EGCC traps the freshest waters close to Greenland and carries a brine signature below 50‐m depth. The cruises illustrate a strong increase in meteoric water of the shelf upper layer (by more than a factor 2) between early May and late June, likely to result from East and South Greenland spring melt. There was also a contribution of sea ice melt near the surface but with large variability both spatially and also between the two June cruises. Furthermore, gradients in the freshwater distribution and its contributions are larger east of Cape Farewell than west of Cape Farewell, which is related to the EGCC being more intense and closer to the coast east of Cape Farewell than west of it. Large temporal variability in the currents is found between different sections to the east and southeast of Cape Farewell, likely related to changes in wind conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 124 (12). pp. 9404-9416.
    Publication Date: 2022-01-31
    Description: We investigate the origin of fresh water on the shelves near Cape Farewell (south Greenland) using sections of three hydrographic cruises in May (HUD2014007) and June 2014 (JR302 and Geovide). We partition the fresh water between meteoric water sources and sea ice melt or brine formation using the δ18O of sea water. The sections illustrate the presence of the East Greenland Coastal Current (EGCC) close to shore east of Cape Farewell. West of Cape Farewell, it partially joins the shelf break, with a weaker near‐surface remnant of the EGCC observed on the shelf southwest and west of Cape Farewell. The EGCC traps the freshest waters close to Greenland and carries a brine signature below 50‐m depth. The cruises illustrate a strong increase in meteoric water of the shelf upper layer (by more than a factor 2) between early May and late June, likely to result from East and South Greenland spring melt. There was also a contribution of sea ice melt near the surface but with large variability both spatially and also between the two June cruises. Furthermore, gradients in the freshwater distribution and its contributions are larger east of Cape Farewell than west of Cape Farewell, which is related to the EGCC being more intense and closer to the coast east of Cape Farewell than west of it. Large temporal variability in the currents is found between different sections to the east and southeast of Cape Farewell, likely related to changes in wind conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...