GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2024-05-02
    Description: We compared Centroid Moment Tensors (CMTs), calculated for large (Mw 〉5), shallow (〈30 km) seismic events to the orientations of seafloor lineaments (n = 4000) mapped throughout the Lau Basin, in the SW Pacific. Ship-based multibeam was combined with vertical gravity gradient data to provide comprehensive coverage to create the lineament map. By comparing the possible focal planes of the CMTs to the orientations of the lineaments, the most likely fault plane solutions were selected, thus classifying the faults and establishing the nature of the highly variable stress regimes in the basin. We resolved the strike, dip and dip direction of 308 faults, and classified 258 additional structures by fault type. The majority of the table was data downloaded from the Global Centroid Moment Tensor (GCMT) database (www.globalcmt.org: accessed October 2018). For more details about the column headers consult the GCMT database website. New data from this study include the latitude and longitude error estimates (in meters), the classified faults (column: 'fault_type'), and the stress domain (column: 'stress_domain'), allocated to each of the classified faults.
    Keywords: Area/locality; B010186B; B010285E; B010484C; B010783C; B010783E; B010903A; B011101E; B011398E; B011498H; B011683A; B011694B; B011694F; B011700C; B011700E; B011777B; B011800B; B012099A; B012300F; B012300I; B012385B; B012598A; B012699D; B012999A; B020201E; B020487B; B020494A; B020796B; B020901A; B021298F; B021581B; B021587A; B021696B; B022093C; B022102F; B022387C; B022491B; B022503C; B022689B; B022787B; B030395E; B030601B; B030880A; B030894B; B031198D; B031293F; B031387A; B031387B; B031387E; B031393C; B031481A; B031487C; B031692A; B031992C; B031998A; B032003A; B032103D; B032377B; B032377C; B032377D; B032596A; B032682D; B032780A; B032780B; B032786A; B032882D; B032893B; B032982B; B032986B; B033002A; B033091A; B040691B; B040980A; B040991B; B041083C; B041201E; B041586A; B041780A; B041991C; B042088C; B042186A; B042294B; B042585D; B042700A; B042800B; B042879B; B042890B; B042979A; B050186A; B050198A; B050280D; B050392A; B050601C; B051486G; B051802C; B051981B; B052102D; B053179B; B060583A; B060598C; B060790C; B061186B; B061382A; B061479B; B061481A; B061492F; B061699D; B061797B; B061895B; B061895C; B062392E; B062502B; B062601M; B070188A; B070188B; B070689A; B070900A; B071684B; B071789A; B071997B; B072202A; B072602B; B072603D; B073101E; B080178A; B080497D; B080586A; B080586B; B080799A; B081087A; B081095B; B081286A; B081295A; B081299A; B081388C; B081694H; B081696C; B081696F; B082185A; B082290B; B082486A; B082486C; B082500A; B082577A; B082603B; B082686B; B082788B; B082790A; B082903B; B082995B; B083195C; B090684A; B090695A; B090882C; B091081A; B091377A; B091395C; B091799C; B091899D; B092097G; B092390A; B092492E; B092497C; B092688E; B092695A; B092995A; B093082A; B100179B; B100285B; B100295B; B100482B; B100684A; B100696A; B101303E; B101384A; B101501A; B101802D; B101802E; B101982A; B102287E; B102290A; B102677A; B102677B; B102885C; B103093C; B103100E; B110187C; B110499B; B110598F; B110796A; B111082A; B111382A; B111494B; B111596B; B111696C; B111696F; B111784G; B111796C; B111796E; B111797A; B111997B; B112090C; B112479A; B113087B; B113088B; B120386A; B120491A; B120696E; B120796A; B120888A; B120888B; B121286A; B121286C; B121386A; B121985A; B122190A; B122285A; B122285B; B122383A; B122387A; B122791B; B122998A; back-arc basins; Body wave magnitude; Body waves, components; Body waves, shortest period; Body waves, stations; C010987B; C011298J; C011498E; C012204A; C020399A; C020991A; C021393D; C022304C; C022304E; C022490A; C030693G; C030799E; C031293D; C031387F; C032004G; C032504E; C041704C; C041793C; C051504D; C051583A; C061404A; C070278A; C080497C; C080897C; C082997B; C090382E; C091400B; C091783C; C092304C; C100480A; C101104F; C101302A; C101804A; C103100F; C110892B; C111004D; C112304C; C120301A; C121804G; C200502181525A; C200503132233A; C200504261133A; C200504261856A; C200505051011A; C200505111540A; C200507310419A; C200508071135A; C200508071354A; C200508071441A; C200508221648A; C200509041213A; C200510191410A; C200510291633A; C200512071934A; C200512130316A; C200512130732A; C200512161433A; C200512201148A; C200601290826A; C200602061134A; C200602260418A; C200603020747A; C200603051712A; C200603140529A; C200603171946A; C200603191254A; C200604031604A; C200604032027A; C200604251512A; C200604300703A; C200605211757A; C200606031326B; C200606131540A; C200606151715A; C200606151810A; C200606232150A; C200606270836A; C200606281322A; C200607020257A; C200607031949A; C200607041259A; C200608111807A; C200608111841A; C200608112020A; C200611061053A; C200611061124A; C200611210112A; C200611241711A; C200701160153A; C200702031647A; C200702050956A; C200702051016A; C200702051019A; C200703270803B; C200704050246A; C200704050325A; C200704130150A; C200705030630A; C200706140529A; C200706192036A; C200706231914A; C200706231920A; C200706231935A; C200706232102A; C200706232152A; C200706241015A; C200706260801A; C200707020054A; C200707090650A; C200707170939A; C200707180007A; C200707182351A; C200707191933A; C200707270351A; C200708222224A; C200709101004A; C200709140546A; C200709160010A; C200709180610A; C200709302011A; C200710050352A; C200710050417A; C200710300458A; C200711231222A; C200711231237A; C200712150246A; C200801201630A; C200801220009A; C200801220628A; C200801220755A; C200801221049A; C200801231220A; C200801240250A; C200801271528A; C200801302347A; C200801310152A; C200802011026A; C200802112320A; C200802141905A; C200803161956A; C200804151724A; C200804160035A; C200804251844A; C200806200424A; C200807221851A; C200807231255A; C200807231324A; C200807231354A; C200808141242A; C200808141510A; C200808240100A; C200809010531A; C200809010706A; C200809011032A; C200810030834A; C200810092308A; C200810232336A; C200810240058A; C200811201758A; C200901300347A; C200902080724A; C200902110931A; C200903070941A; C200903241813A; C200904142237A; C200904142329A; C200905110526A; C200905260049A; C200907020806A; C200907101604A; C200907211507A; C200908070242A; C200908070334A; C200908071734A; C200909210606A; C200910011739A; C200910011821A; C200910011840A; C200910031402A; C200910031410A; C200910051852A; C200910071310A; C200910141800A; C200910271201A; C200910281955A; C200911050600A; C200911050604A; C200911050611A; C200911291033A; C200912262123A; C200912291202A; C201001131621A; C201001131649A; C201001131651A; C201001171046A; C201002071312A; C201002071359A; C201002150529A; C201003280207A; C201003280251A; C201004042028A; C201007041338A; C201007041613A; C201007171620A; C201008300444A; C201009071249A; C201009071613A; C201009291225A; C201012011601A; C201012182224A; C201012201743A; C201012210736A; C201101211711A; C201101241331A; C201102031113A; C201102280224A; C201103262249A; C201103280847A; C201103310011A; C201103310259A; C201103310744A; C201103311631A; C201103311709A; C201104240601A; C201105021321A; C201105021922A; C201105171035A; C201105180810A; C201105240853A; C201105241630A; C201105300006A; C201106051635A; C201106051656A; C201106192126A; C201106280707A; C201107051902A; C201107061011A; C201107061344A; C201107061446A; C201107101847A; C201107102029A; C201107110054A; C201108030320A; C201108201027A; C201109222307A; C201109230901A; C201110280447A; C201110280913A; C201111130624A; C201111190541A; C201111190706A; C201112140048A; C201201041345A; C201201041804A; C201201041854A; C201201081951A; C201201082004A; C201201090006A; C201202220426A; C201202220804A; C201202221003A; C201202240202A; C201202260246A; C201202260508A; C201202260521A; C201202261117A; C201202261212A; C201202261349A; C201202261613A; C201202261628A; C201202261919A; C201202261937A; C201202270135A; C201202270301A; C201202270711A; C201202271434A; C201202271454A; C201203122148A; C201203192346A; C201203300618A; C201203312252A; C201205041758A; C201205051118A; C201205132246A; C201206041418A; C201206070023A; C201206170638A; C201206190036A; C201207060040A; C201207110357A; C201207230328A; C201208030508A; C201208030722A; C201208031945A; C201208100642A; C201208192054A; C201208200048A; C201208200215A; C201209271131A; C201209271139A; C201210121510A; C201210132236A; C201210220032A; C201210301059A; C201211032259A; C201211132323A; C201211220619A; C201211281016A; C201212120144A; C201212141652A; C201212271531A; C201301020819A; C201301031649A; C201301291329A; C201302152120A; C201302250259A; C201302250356A; C201304120048A; C201304262010A; C201305060733A; C201305310334A; C201306181313A; C201306301513A; C201307090124A; C201307290812A; C201309081000A; C201311141415A; C201312111809A; C201312151451A; C201401210129A; C201401220341A; C201401231209A; C201401261039A; C201401300446A; C201402230216A; C201402231654A; C201402231700A; C201402240119A; C201403070557A; C201403161115A; C201403281437A; C201403281454A; C201404250841A; C201405020746A; C201405131005A; C201405180058A; C201405180246A; C201405180638A; C201406062306A; C201406081108A; C201406091119A; C201406291552A; C201406291715A; C201406291824A; C201407041130A; C201407101732A; C201407212144A; C201408141846A; C201408271631A; C201409280623A; C201410051716A; C201410192047A; C201410201315A; C201410240452A; C201410280044A; C201410280315A; C201411051813A; C201411240417A;
    Type: Dataset
    Format: text/tab-separated-values, 42372 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: New biostratigraphical, geochemical, and magnetic evidence is synthesized with IODP Expedition 352 shipboard results to understand the sedimentary and tectono-magmatic development of the Izu–Bonin outer forearc region. The oceanic basement of the Izu–Bonin forearc was created by supra-subduction zone seafloor spreading during early Eocene (c. 50–51 Ma). Seafloor spreading created an irregular seafloor topography on which talus locally accumulated. Oxide-rich sediments accumulated above the igneous basement by mixing of hydrothermal and pelagic sediment. Basaltic volcanism was followed by a hiatus of up to 15 million years as a result of topographic isolation or sediment bypassing. Variably tuffaceous deep-sea sediments were deposited during Oligocene to early Miocene and from mid-Miocene to Pleistocene. The sediments ponded into extensional fault-controlled basins, whereas condensed sediments accumulated on a local basement high. Oligocene nannofossil ooze accumulated together with felsic tuff that was mainly derived from the nearby Izu–Bonin arc. Accumulation of radiolarian-bearing mud, silty clay, and hydrogenous metal oxides beneath the carbonate compensation depth (CCD) characterized the early Miocene, followed by middle Miocene–Pleistocene increased carbonate preservation, deepened CCD and tephra input from both the oceanic Izu–Bonin arc and the continental margin Honshu arc. The Izu–Bonin forearc basement formed in a near-equatorial setting, with late Mesozoic arc remnants to the west. Subduction-initiation magmatism is likely to have taken place near a pre-existing continent–oceanic crust boundary. The Izu–Bonin arc migrated northward and clockwise to collide with Honshu by early Miocene, strongly influencing regional sedimentation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-26
    Description: We present an integrated age model for the incoming Cocos Plate sediments offshore Costa Rica. The data, collected over two IODP Expeditions (334 and 344), provides a medium­ to high­resolution record from the initial formation of the ocean crust in the Miocene to the present day. This study provides 〉50 age control points for the CRISP sediments from Sites U1381 and U1414. Although the two sites are just 10 km apart, there are distinct differences in the sediment and tephra record. Most notable is the presence of a hiatus at Site U1381. The hiatus, which is seen at other sites on the Cocos Plate, but not at Site U1414, may be related to erosion due to bottom water currents, mass wasting from Cocos Ridge subduction or may be related to the closure of the Central American Seaway (CAS). Sediment accumulation rates in the Miocene are comparable to modern abyssal plain rates. However, an increase is observed in the Pleistocene, when detritus from the forearc basin appears at Site U1414 ~2 Ma, shortly after the initiation of Cocos Ridge subduction. A tectonic model is presented that reconstructs the Cocos Plate, from its formation at 23 Ma to the present day. Eastern Equatorial Pacific (EEP) paleoceanographic events, such as the Miocene ‘carbonate crash’ and the Late Miocene­Early Pliocene ‘biogenic bloom’ observed at Site U1414, are also discussed.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The transition from subduction to transform motion along horizontal terminations of trenches is associated with tearing of the subducting slab and strike-slip tectonics in the overriding plate. One prominent example is the northern Tonga subduction zone, where abundant strike-slip faulting in the NE Lau back-arc basin is associated with transform motion along the northern plate boundary and asymmetric slab rollback. Here, we address the fundamental question: how does this subduction-transform motion influence the structural and magmatic evolution of the back-arc region? To answer this, we undertake the first comprehensive study of the geology and geodynamics of this region through analyses of morphotectonics (remote-predictive geologic mapping) and fault kinematics interpreted from ship-based multibeam bathymetry and Centroid-Moment Tensor data. Our results highlight two unique features of the NE Lau Basin: (1) the occurrence of widely distributed off-axis volcanism, in contrast to typical ridge-centered back-arc volcanism, and (2) fault kinematics dominated by shallow-crustal strike slip-faulting (rather than normal faulting) extending over ~120 km from the transform boundary. The orientations of these strike-slip faults are consistent with reactivation of earlier-formed normal faults in a sinistral megashear zone. Notably, two distinct sets of Riedel megashears are identified, indicating a recent counter-clockwise rotation of part of the stress field in the back-arc region closest to the arc. Importantly, these structures directly control the development of complex volcanic-compositional provinces, which are characterized by variably-oriented spreading centers, off-axis volcanic ridges, extensive lava flows, and point-source rear-arc volcanoes that sample a heterogenous mantle wedge, with sharp gradients and contrasts in composition and magmatic affinity. This study adds to our understanding of the geologic and structural evolution of modern backarc systems, including the association between subduction-transform motions and the siting and style of seafloor volcanism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: A 1:1,000,000-scale lithostratigraphic assemblage map of the Lau Basin (southwestern Pacific Ocean) has been created using remote predictive mapping (RPM) techniques developed by geological surveys on land. Formation-level geological units were identified in training sets at scales of 1:100,000–1:200,000 in different parts of the basin and then extrapolated to the areas where geological data are sparse. The final compilation is presented together with a quantitative analysis of assemblage-level crustal growth based on area-age relationships of the assigned units. The data sets used to develop mapping criteria and an internally consistent legend for the compilation included high-resolution ship-based multibeam, satellite- and ship-based gravity, magnetics, seafloor imaging, and sampling data. The correlation of units was informed by published geochronological information and kinematic models of basin opening. The map covers 〉1,000,000 km2 of the Lau-Tonga arc-backarc system, subdivided into nine assemblage types: forearc crust (9% by area), crust of the active volcanic arc (7%), backarc rifts and spreading centers (20%), transitional arc-backarc crust (13%), relict arc crust (38%), relict backarc crust (8%), and undivided arc-backarc assemblages (〈5%), plus oceanic assemblages, intraplate volcanoes, and carbonate platforms. Major differences in the proportions of assemblage types compared to other intraoceanic subduction systems (e.g., Mariana backarc, North Fiji Basin) underscore the complex geological makeup of the Lau Basin. Backarc crust formed and is forming simultaneously at 12 different locations in the basin in response to widely distributed extension, and this is considered to be a dominant pattern of crustal accretion in large arc-backarc systems. Accelerated basin opening and a microplate breakout north of the Peggy Ridge has been accommodated by seven different spreading centers. The result is an intricate mosaic of small intact assemblages in the north of the basin, compared to fewer and larger assemblages in the south. Although the oldest rocks are Eocene (~40 m.y. old basement of the Lau and Tonga Ridges), half of the backarc crust in the map area formed within the last 3 m.y. and therefore represents some of the fastest growing crust on Earth, associated with prolific magmatic and hydro-thermal activity. These observations provide important clues to the geological evolution and makeup of ancient backarc basins and to processes of crustal growth that ultimately lead to the emergence of continents.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-07
    Description: Cruise SO299 DYNAMET from Townsville (Australia) to Singapore aimed at studying the links between geodynamics (regional-scale plate tectonics, local structural geology and volcanism) and metallogeny with a special emphasis on the Au-rich mineralisation on and in the vicinity of Lihir Island, Papua New Guinea. The research programme started on 13th June and ended on 15 th July 2023, totalling to 32.5 working days within the Exclusive Economic Zone of Papua New Guinea and international waters. Underway hydroacoustic and gravity data were additionally recorded in international waters during the transit towards Singapore. The three main working areas targeted the New Ireland Basin at the newly discovered Karambusel vent field (Conical Seamount) and Mussel Cliff, the Weitin Fault area south of New Ireland, and the Mussau Ridge. We performed 〉4,800 kilometers of hydroacoustic (multibeam echosounder and sub-bottom profiler) and gravimetric surveys, twelve dives with the remotely operated vehicle (ROV) KIEL 6000 from GEOMAR, 16 stations with the TV-guided grab, 20 chain bag dredge and 20 heat flow stations. We recovered a total of 447 rock and 346 sediment samples and took 570 individual gas and fluid samples. We deployed and recovered 18 ocean bottom seismometers (OBS) and 16 ocean bottom magneto-telluric (OBMT) instruments in the vicinity of Lihir island. The wealth of samples and data collected during the cruise and complemented by a variety of geophysical, petrological and geochemical analyses post-cruise will aid the development of a new spatial and temporal model of the magmatic and hydrothermal evolution in response to recent plate tectonic changes.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...