GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    NOAA/National Centers for Coastal Ocean Science | Charleston, SC
    In:  http://aquaticcommons.org/id/eprint/14662 | 403 | 2014-02-21 22:08:38 | 14662 | United States National Ocean Service
    Publication Date: 2021-07-01
    Description: A study was initiated in May 2011, under the direction of the Deepwater Horizon (DWH) Natural Resource Damage Assessment (NRDA) Deepwater Benthic Communities Technical Working Group (NRDA Deep Benthic TWG), to assess potential impacts of the DWH oil spill on sediments and resident benthic fauna in deepwater (〉 200 meters) areas of the Gulf. Key objectives of the study were to complete the analysis of samples from 65 priority stations sampled in September-October 2010 on two DWH Response cruises (Gyre and Ocean Veritas) and from 38 long-term monitoring sites (including a subset of 35 of the original 65) sampled on a follow-up NRDA cruise in May-June 2011. The present progress report provides a brief summary of results from the initial processing of samples from fall 2010 priority sites (plus three additional historical sites). Data on key macrofaunal, meiofaunal, and abiotic environmental variables are presented for each of these samples and additional maps are included to depict spatial patterns in these variables throughout the study region. The near-field zone within about 3 km of the wellhead, where many of the stations showed evidence of impaired benthic condition (e.g. low taxa richness, high nematode/harpacticoid-copepod ratios), also is an area that contained some of the highest concentrations of total petroleum hydrocarbons (TPH), total polycyclic aromatic hydrocarbons (total PAHs), and barium in sediments (as possible indicators of DWH discharges). There were similar co-occurrences at other sites outside this zone, especially to the southwest of the wellhead out to about 15 km. However, there also were exceptions to this pattern, for example at several farther-field sites in deeper-slope and canyon locations where there was low benthic species richness but no evidence of exposure to DWH discharges. Such cases are consistent with historical patterns of benthic distributions in relation to natural controlling factors such as depth, position within canyons, and availability of organic matter derived from surface-water primary production.
    Keywords: Biology ; Ecology ; Fisheries ; Pollution
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 32
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-01
    Description: The Deepwater Horizon (DWH) accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer.
    Keywords: Ecology ; Fisheries ; Health ; Pollution
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: e70540
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 2617-2626, doi:10.1016/j.dsr2.2008.07.011.
    Description: Benthic foraminiferal biomass, density, and species composition were determined at ten sites in the Gulf of Mexico. During June 2001 and June 2002, sediment samples were collected with a GoMex boxcorer. A 7.5-cm diameter subcore was taken from a box core collected at each site and sliced into 1-cm or 2-cm sections to a depth of 2 or 3 cm; the 〉63-mm fraction was examined shipboard for benthic foraminifera. Individual foraminifers were extracted for adenosine triphosphate (ATP) using a luciferin-luciferase assay, which indicated the total ATP content per specimen; that data was converted to organic carbon. Foraminiferal biomass and density varied substantially (~2-53 mg C m-2; ~3,600-44,500 individuals m-2, respectively) and inconsistently with water depth. For example, although two ~1000-m deep sites were geographically separated by only ~75 km, the foraminiferal biomass at one site was relatively low (~9 mg C m-2) while the other site had the highest foraminiferal biomass (~53 mg C m-2). Although most samples from Sigsbee Plain (〉3000 m) had low biomass, one Sigsbee site had 〉20 mg foraminiferal C m-2. The foraminiferal community from all sites (i.e., bathyal and abyssal locales) was dominated by agglutinated, rather than calcareous or tectinous, species. Foraminiferal density never exceeded that of metazoan meiofauna at any site. Foraminiferal biomass, however, exceeded metazoan meiofaunal biomass at five of the ten sites, indicating that foraminifera constitute a major component of the Gulf’s deep-water meiofaunal biomass.
    Description: Funded by Minerals Management Service contract 1435-01-99-CT-30991 to G.T. Rowe (Texas A&M University).
    Keywords: Foraminifera ; Meiofauna ; Biomass ; Deep sea ; USA ; Gulf of Mexico
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...