GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Language
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annali di matematica pura ed applicata 89 (1971), S. 121-143 
    ISSN: 1618-1891
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Summary In this paper three new results are obtained for equations of the form (1.1). Conditions are established which guarantee asymptotic stability, ultimate boundedness, and convergence of solutions of (1.1).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-10
    Description: The combination of two well-established methods, of quadrocopter-borne air sampling and methane isotopic analyses, is applied to determine the source process of methane at different altitudes and to study mixing processes. A proof-of-concept study was performed to demonstrate the capabilities of quadrocopter air sampling for subsequently analysing the methane isotopic composition δ13C in the laboratory. The advantage of the system compared to classical sampling on the ground and at tall towers is the flexibility concerning sampling location, and in particular the flexible choice of sampling altitude, allowing the study of the layering and mixing of air masses with potentially different spatial origin of air masses and methane. Boundary layer mixing processes and the methane isotopic composition were studied at Polder Zarnekow in Mecklenburg–West Pomerania in the north-east of Germany, which has become a strong source of biogenically produced methane after rewetting the drained and degraded peatland. Methane fluxes are measured continuously at the site. They show high emissions from May to September, and a strong diurnal variability. For two case studies on 23 May and 5 September 2018, vertical profiles of temperature and humidity were recorded up to an altitude of 650 and 1000 m, respectively, during the morning transition. Air samples were taken at different altitudes and analysed in the laboratory for methane isotopic composition. The values showed a different isotopic composition in the vertical distribution during stable conditions in the morning (delta values of −51.5 ‰ below the temperature inversion at an altitude of 150 m on 23 May 2018 and at an altitude of 50 m on 5 September 2018, delta values of −50.1 ‰ above). After the onset of turbulent mixing, the isotopic composition was the same throughout the vertical column with a mean delta value of −49.9 ± 0.45 ‰. The systematically more negative delta values occurred only as long as the nocturnal temperature inversion was present. During the September study, water samples were analysed as well for methane concentration and isotopic composition in order to provide a link between surface and atmosphere. The water samples reveal high variability on horizontal scales of a few tens of metres for this particular case. The airborne sampling system and consecutive analysis chain were shown to provide reliable and reproducible results for two samples obtained simultaneously. The method presents a powerful tool for distinguishing the source process of methane at different altitudes. The isotopic composition showed clearly depleted delta values directly above a biological methane source when vertical mixing was hampered by a temperature inversion, and different delta values above, where the air masses originate from a different footprint area. The vertical distribution of methane isotopic composition can serve as tracer for mixing processes of methane within the atmospheric boundary layer.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-10
    Description: The Tibetan alpine steppe ecosystem covers an area of roughly 800 000 km2 and contains up to 3.3 % soil organic carbon in the uppermost 30 cm, summing up to 1.93 Pg C for the Tibet Autonomous Region only (472 037 km2). With temperatures rising 2 to 3 times faster than the global average, these carbon stocks are at risk of loss due to enhanced soil respiration. The remote location and the harsh environmental conditions on the Tibetan Plateau (TP) make it challenging to derive accurate data on the ecosystem–atmosphere exchange of carbon dioxide (CO2) and water vapor (H2O). Here, we provide the first multiyear data set of CO2 and H2O fluxes from the central Tibetan alpine steppe ecosystem, measured in situ using the eddy covariance technique. The calculated fluxes were rigorously quality checked and carefully corrected for a drift in concentration measurements. The gas analyzer self-heating effect during cold conditions was evaluated using the standard correction procedure and newly revised formulations (Burba et al., 2008; Frank and Massman, 2020). A wind field analysis was conducted to identify influences of adjacent buildings on the turbulence regime and to exclude the disturbed fluxes from subsequent computations. The presented CO2 fluxes were additionally gap filled using a standardized approach. The very low net carbon uptake across the 15-year data set highlights the special vulnerability of the Tibetan alpine steppe ecosystem to become a source of CO2 due to global warming. The data are freely available at https://doi.org/10.5281/zenodo.3733202 (Nieberding et al., 2020a) and https://doi.org/10.11888/Meteoro.tpdc.270333 (Nieberding et al., 2020b) and may help us to better understand the role of the Tibetan alpine steppe in the global carbon–climate feedback.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-10-27
    Description: The helicopter-borne measurement system HELiPOD is a platform for atmospheric and other environmental measurements to investigate local and regional phenomena. It can be operated in remote areas, as from a research vessel with a helicopter, without the need for a runway. This article presents the current design concept, technical details, and sensor package of HELiPOD, which was completely renewed for the deployment during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition across the North Polar Ocean in 2019/2020. It was updated for the deployment in the methane campaigns METHANE-To-Go-Poland to study methane emissions from coal mines in South Poland, and METHANE-To-Go-Nordstream, a follow-up campaign to study methane emissions from the Baltic Sea after the NordStream pipeline leaks in 2022. The HELiPOD has the dimensions of 5.2 m × 2.1 m × 1.2 m and a weight of around 325 kg. It provides the possibility for flight patterns on a horizontal scale of typically 100 m–100 km and at altitudes from 10 m up to 3 km. HELiPOD employs distributed data acquisition and central data synchronization, equipped with sensors relevant to five fields of research: atmospheric dynamics, trace gases, aerosols, radiation, and surface properties. The focus of this article is the technical realization, in particular the data acquisition system for about 60 sensors, as well as concepts for energy supply and thermal management. It describes the complementary use of different measurement principles and redundant sensors for improved data quality. Operational procedures are also discussed.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...