GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 9 (1997), S. 3162-3171 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We investigate the spreading of passive tracers in closed basins. If the characteristic length scale of the Eulerian velocities is not very small compared with the size of the basin the usual diffusion coefficient does not give any relevant information about the mechanism of spreading. We introduce a finite size characteristic time τ(δ) which describes the diffusive process at scale δ. When δ is small compared with the typical length of the velocity field one has τ(δ)∼λ−1, where λ is the maximum Lyapunov exponent of the Lagrangian motion. At large δ the behavior of τ(δ) depends on the details of the system, in particular the presence of boundaries, and in this limit we have found a universal behavior for a large class of system under rather general hypothesis. The method of working at fixed scale δ makes more physical sense than the traditional way of looking at the relative diffusion at fixed delay times. This technique is displayed in a series of numerical experiments in simple flows. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physica D: Nonlinear Phenomena 28 (1987), S. 233 
    ISSN: 0167-2789
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-21
    Description: This paper is the outcome of a workshop held in Rome in November 2011 on the occasion of the 25th anniversary of the POEM (Physical Oceanography of the Eastern Mediterranean) program. In the workshop discussions, a number of unresolved issues were identified for the physical and biogeochemical properties of the Mediterranean Sea as a whole, i.e., comprising the Western and Eastern sub-basins. Over the successive two years, the related ideas were discussed among the group of scientists who participated in the workshop and who have contributed to the writing of this paper. Three major topics were identified, each of them being the object of a section divided into a number of different sub-sections, each addressing a specific physical, chemical or biological issue: 1. Assessment of basin-wide physical/biochemical properties, of their variability and interactions. 2. Relative importance of external forcing functions (wind stress, heat/moisture fluxes, forcing through straits) vs. internal variability. 3. Shelf/deep sea interactions and exchanges of physical/biogeochemical properties and how they affect the sub-basin circulation and property distribution. Furthermore, a number of unresolved scientific/methodological issues were also identified and are reported in each sub-section after a short discussion of the present knowledge. They represent the collegial consensus of the scientists contributing to the paper. Naturally, the unresolved issues presented here constitute the choice of the authors and therefore they may not be exhaustive and/or complete. The overall goal is to stimulate a broader interdisciplinary discussion among the scientists of the Mediterranean oceanographic community, leading to enhanced collaborative efforts and exciting future discoveries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Cambridge Univ. Press
    In:  In: Climate change 2007: the physical science basis. , ed. by Solomon, S. and Qin, D. Cambridge Univ. Press, Cambridge, UK, pp. 385-432.
    Publication Date: 2012-02-23
    Type: Book chapter , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-20
    Description: The processes involved in deep-sea variability and their impact on climate are still unclear, due to a lack of long-term observations above 2000 m of depth. Given the paucity of data and the difficulties implied in such observations, it is important to integrate different resources and methodologies to make the best use of the limited data available for answering open questions about deep-sea dynamics. A set of different analyses was developed and applied for both in situ seafloor time series data and full-depth CTD profiles collected in the Ionian Sea (Mediterranean Sea). Time series spectral analysis revealed the presence of a near-inertial peak in the current kinetic energy spectrum hinting at the presence of local vorticity, while modal analysis applied to CTD profiles disclosed a variability at tidal periodicity in the deepest layers, suggesting a connection with the surface and subsurface layers. This data depicts a dense water mass in the Ionian deep layers that could be a key condition for catching this variability, from tidal to decadal time scale (e.g. the Eastern Mediterranean Transient ). The observed mean structure of the stratification shows that a 4-layer scheme should be enough to have a realistic yet straightforward theoretical representation. Thus, a quasi-geostrophic equation with 4 coupled layers, simulated with a custom-designed algorithm, has been considered to investigate the role that the stratification of the water column can have on the propagation of vorticity, and how the relative layer thicknesses and different densities can trigger instability transport throughout the water column.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-22
    Description: In this article we describe an innovative multi-model system developed within the CIRCEEU-FP6 Project and used to produce simulations of the Mediterranean Sea regional climate.The models include high-resolution Mediterranean Sea components, which allow to assess therole of the basin, and in particular of the air-sea feedbacks in the climate of the region. The models have been integrated from 1951 to 2050, using observed radiative forcings duringthe first half of the simulation period and the IPCC SRES A1B scenario during the secondhalf.The projections show a substantial warming (about 1.5°-2°C) and a significant decrease ofprecipitation (about 5%) in the region for the scenario period. However, locally the changesmight be even larger. In the same period, the projected surface net heat loss decreases, leadingto a weaker cooling of the Mediterranean Sea by the atmosphere, whereas the water budgetappears to increase, leading the basin to loose more water through its surface than in the past.These results are overall consistent with the findings of previous scenario simulations, such asPRUDENCE, ENSEMBLES and CMIP3. The agreement suggests that these findings arerobust to substantial changes in the configuration of the models used to make the simulations.Finally, the models produce a 2021-2050 mean steric sea-level rise that ranges between +7 cm and +12 cm, with respect to the period of reference.
    Description: Published
    Description: 65-81
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: Mediterranean Sea ; climate projections ; multi-model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The warm-temperate regions of the globe characterized by dry summers and wet winters (Mediterranean climate; MED) are especially vulnerable to climate change. The potential impact on water resources,ecosystems and human livelihood requires a detailed picture of the future changes in this unique climate zone. Here we apply a probabilistic approach to quantitatively address how and why the geographic distribution of MED will change based on the latest-available climate projections for the 21st century. Our analysis provides, for the first time, a robust assessment of significant northward and eastward future expansions of MED over both the Euro-Mediterranean and western North America. Concurrently, we show a significant 21st century replacement of the equatorward MED margins by the arid climate type.Moreover, future winters will become wetter and summers drier in both the old and newly established MED zones. Should these projections be realized, living conditions in some of the most densely populated regions in the world will be seriously jeopardized.
    Description: Published
    Description: 7211
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: CMIP5 projections ; Mediterranean climate ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-08-31
    Description: The City of Venice and the surrounding lagoonal ecosystem are highly vulnerable to variations in relative sea level. In the past ~150 years, this was characterized by a secular linear trend of about 2.5 mm/year resulting from the combined contributions of vertical land movement and sea-level rise. This literature review reassesses and synthesizes the progress achieved in understanding, estimating and predicting the individual contributions to local relative sea level, with focus on the most recent publications. The current best estimate of historical sea-level rise in Venice, based on tide-gauge data after removal of subsidence effects, is 1.23 ± 0.13 mm/year (period from 1872 to 2019). Subsidence thus contributed to about half of the observed relative sea-level rise over the same period. A higher – yet more uncertain – rate of sea-level rise is observed during recent decades, estimated from tide-gauge data to be about 2.76 ± 1.75 mm/year in the period 1993–2019 for the climatic component alone. An unresolved issue is the contrast between the observational capacity of tide gauges and satellite altimetry, with the latter tool not covering the Venice Lagoon. Water mass exchanges through the Gibraltar Strait currently constitute a source of substantial uncertainty for estimating future deviations of the Mediterranean mean sea-level trend from the global-mean value. Subsidence and regional atmospheric and oceanic circulation mechanisms can deviate Venetian relative sea-level trends from the global mean values for several decades. Regional processes will likely continue to determine significant interannual and interdecadal variability of Venetian sea level with magnitude comparable to that observed in the past, as well as non-negligible differential trends. Our estimate of the likely range of mean sea-level rise in Venice by 2100 due to climate change is presently estimated between 11 and 110 centimetres. An improbable yet possible high-end scenario linked to strong ice-sheet melting yields about 170 centimetres of mean sea-level rise in Venice by 2100. Projections of natural and human induced vertical land motions are currently not available, but historical evidence demonstrates that they can produce a significant contribution to the relative sea-level rise in Venice, further increasing the hazard posed by climatically-induced sea-level changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-20
    Description: The city of Venice and the surrounding lagoonal ecosystem are highly vulnerable to variations in relative sea level. In the past ∼150 years, this was characterized by an average rate of relative sea-level rise of about 2.5 mm/year resulting from the combined contributions of vertical land movement and sea-level rise. This literature review reassesses and synthesizes the progress achieved in quantification, understanding and prediction of the individual contributions to local relative sea level, with a focus on the most recent studies. Subsidence contributed to about half of the historical relative sea-level rise in Venice. The current best estimate of the average rate of sea-level rise during the observational period from 1872 to 2019 based on tide-gauge data after removal of subsidence effects is 1.23 ± 0.13 mm/year. A higher – but more uncertain – rate of sea-level rise is observed for more recent years. Between 1993 and 2019, an average change of about +2.76 ± 1.75 mm/year is estimated from tide-gauge data after removal of subsidence. Unfortunately, satellite altimetry does not provide reliable sea-level data within the Venice Lagoon. Local sea-level changes in Venice closely depend on sea-level variations in the Adriatic Sea, which in turn are linked to sea-level variations in the Mediterranean Sea. Water mass exchange through the Strait of Gibraltar and its drivers currently constitute a source of substantial uncertainty for estimating future deviations of the Mediterranean mean sea-level trend from the global-mean value. Regional atmospheric and oceanic processes will likely contribute significant interannual and interdecadal future variability in Venetian sea level with a magnitude comparable to that observed in the past. On the basis of regional projections of sea-level rise and an understanding of the local and regional processes affecting relative sea-level trends in Venice, the likely range of atmospherically corrected relative sea-level rise in Venice by 2100 ranges between 32 and 62 cm for the RCP2.6 scenario and between 58 and 110 cm for the RCP8.5 scenario, respectively. A plausible but unlikely high-end scenario linked to strong ice-sheet melting yields about 180 cm of relative sea-level rise in Venice by 2100. Projections of human-induced vertical land motions are currently not available, but historical evidence demonstrates that they have the potential to produce a significant contribution to the relative sea-level rise in Venice, exacerbating the hazard posed by climatically induced sea-level changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...