GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2019-09-23
    Description: Highlights • Subplinian to Plinian eruptions from Cocos Island • Tectonically controlled melt ascent • Ocean island evolution without passing typical growth stages Abstract We report a series of fourteen marine tephra layers that are the products of large explosive eruptions of Subplinian to Plinian intensities and magnitudes (VEI 〉 4) from Cocos Island, Costa Rica. Cocos Island is a volcanic island in the eastern Central Pacific Ocean ~ 500 km offshore Costa Rica, and is situated on the northwestern flank of the aseismic Cocos Ridge. Geochemical fingerprinting of Pleistocene (~ 2.4–1.4 Ma) marine tephra layers from Ocean Drilling Project (ODP) Leg 202 Site 1241 using major and trace element compositions of volcanic glass shards demonstrates unequivocally their origin from Cocos Island rather than the Galápagos Archipelago or the Central American Volcanic Arc (CAVA). Cocos Island and the adjacent seamounts of the Cocos Island Province have alkalic compositions and formed on young (≤ 3 Ma) oceanic crust from an extinct spreading ridge bounded by a transform fault against the older and thicker crust of the aseismic Cocos Ridge. Cocos Island has six times the average volume of the adjacent seamounts although all appear to have formed during the 3–1.4 Ma time period. Cocos Island lies closest to the transform fault and we explain its excessive growth by melts rising from garnet-bearing mantle being deflected from the thick Cocos Ridge lithosphere toward the thinner lithosphere on the other side of the transform, thus enlarging the melt catchment area for Cocos Island compared to the seamounts farther away from the transform. This special setting favored growth above sea level and subaerial explosive eruptions even though the absence of appropriate compositions suggests that the entirely alkalic Cocos Island (and seamounts) never evolved through the productive tholeiitic shield stage typical of other Pacific Ocean islands, possibly because melt production rates remained too small. Conditions of magma generation and ascent resembled Hawaiian pre-shield volcanoes but persisted for much longer (〈 1 m.y.) and formed evolved, trachytic magmas. Therefore Cocos Island may be a unique example for a volcanic ocean island that did not pass through the typical growth stages.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-19
    Description: International Ocean Discovery Program (IODP) Hole U1436A (proposed Site IBM-4GT) lies in the western part of the Izu fore-arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, 1.5 km west of Ocean Drilling Program (ODP) Site 792, and at 1776 meters below sea level (mbsl). It was drilled as a 150 m deep geotechnical test hole for potential future deep drilling (5500 meters below seafloor [mbsf]) at proposed Site IBM-4 using the D/V Chikyu. Core from Site U1436 yielded a rich record of Late Pleistocene explosive volcanism, including distinctive black glassy mafic ash layers that may record large-volume eruptions on the Izu arc front. Because of the importance of this discovery, Site U1436 was drilled in three additional holes (U1436B, U1436C, and U1436D), as part of a contingency operation, in an attempt to get better recovery on the black glassy mafic ash layers and enclosing sediments and to better constrain the thickness of the mafic ash layers. IODP Site U1437 is located in the Izu rear arc, ~330 km west of the axis of the Izu-Bonin Trench and ~90 km west of the arc-front volcanoes Myojinsho and Myojin Knoll, at 2117 mbsl. The primary scientific objective for Site U1437 was to characterize “the missing half of the subduction factory”; this was because numerous ODP/Integrated Ocean Drilling Program sites had been drilled in the arc to fore-arc region (i.e., ODP Site 782A Leg 126), but this was the first site to be drilled in the rear part of the Izu arc. A complete view of the arc system is needed to understand the formation of oceanic arc crust and its evolution into continental crust. Site U1437 on the rear arc had excellent core recovery in Holes U1437B and U1437D, and we succeeded in hanging the longest casing ever in the history of R/V JOIDES Resolution scientific drilling (1085.6 m) in Hole U1437E and cored to 1806.5 mbsf. The stratigraphy at Site U1437 was divided into seven lithostratigraphic units (I–VII) that were distinguished from each other based on the proportions and characteristics of tuffaceous mud/mudstone and interbedded tuff, lapilli tuff, and tuff breccia. The section is much more mud rich than expected, with ~60% tuffaceous mud for the section as a whole (89% in the uppermost 433 m) and high sedimentation rates of 100–260 m/My for the upper 1320 m (Units I–V). The proportion (40%) and grain size of tephra are much smaller than expected for an intra-arc basin, composed half of ash/tuff and half of lapilli tuff of fine grain size (clasts 〈 3 cm). These were deposited by suspension settling through water and from density currents, in relatively distal settings. Volcanic blocks are only sparsely scattered through the lowermost 25% of the section (Units VI and VII, 1320–1806.5 mbsf), which includes hyaloclastite, in situ quench-fragmented blocks, and a rhyolite peperite intrusion (i.e., proximal deposits). The transition from unconsolidated to lithified rocks occurred progressively; however, sediments were considered lithified from 427 mbsf (top of Hole U1437D) downward. Alteration resulted in destruction of fresh glass from ~750 mbsf downward, but minerals are less altered. Because of the alteration, the deepest biostratigraphic datum was at ~850 mbsf and the deepest paleomagnetic datum was at ~1300 mbsf. Additional age control deeper than this depth is provided by an age range of 10.97–11.85 Ma inferred from a nannofossil assemblage at ~1403 mbsf and a preliminary U-Pb zircon concordia intercept age of 13.6 +1.6/–1.7 Ma, measured postcruise on a rhyolite peperite in Unit VI at ~1390 mbsf. Based on the seismic profiles, the Miocene–Oligocene hiatus (~17–23 Ma) was predicted to lie at ~1250 mbsf, but strata at that depth (Unit V, 1120–1312 mbsf) are much younger (~9 Ma), indicating that we recovered a thicker Neogene section of volcaniclastics and associated igneous rocks than anticipated. Our preliminary interpretation of shipboard geochemistry is that arc-front versus rear-arc sources can be distinguished in the upper, relatively distal 1320 m of section (Units I–V), whereas the lower, proximal 25% of the section (Units VI–VII) may be geochemically heterogeneous, suggesting that the rear-arc magmas only fully compositionally diverged after ~13 Ma.
    Type: Report , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    IODP
    In:  In: Proceedings of the International Ocean Discovery Program, Expedition 350: Izu-Bonin-Mariana Rear Arc. IODP, College Station, Texas, n/a.
    Publication Date: 2015-09-15
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    IODP
    In:  In: Proceedings of the International Ocean Discovery Program, Expedition 350: Izu-Bonin-Mariana Rear Arc. IODP, College Station, Texas, p. 142.
    Publication Date: 2015-12-02
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    IODP
    In:  In: Proceedings of the International Ocean Discovery Program, Expedition 350: Izu-Bonin-Mariana Rear Arc. IODP, College Station, Texas, p. 42.
    Publication Date: 2015-12-02
    Description: Introduction This chapter of the International Ocean Discovery Program (IODP) Expedition 350 Proceedings volume documents the procedures and tools employed in the various shipboard laboratories of the R/V JOIDES Resolution during Expedition 350. This information applies only to shipboard work described in the Expedition Reports section of this volume. Methods for shore-based analyses of Expedition 350 samples and data will be described in the individual scientific contributions to be published in the open literature or in the Expedition Research Results section of this volume. This section describes procedures and equipment used for drilling, coring, and hole completion; core handling; computation of depth for samples and measurements; and sequence of shipboard analyses. Subsequent sections describe specific laboratory procedures and instruments in more details.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    IODP
    In:  In: Proceedings of the International Ocean Discovery Program, Expedition 350: Izu-Bonin-Mariana Rear Arc. , ed. by Tamura, Y., Busby, C. J. and Blum, P. IODP, College Station, Texas, pp. 1-65.
    Publication Date: 2017-03-22
    Description: International Ocean Discovery Program (IODP) Hole U1436A (proposed Site IBM-4GT) lies in the western part of the Izu fore-arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, and 1.5 km west of Ocean Drilling Program (ODP) Site 792, at 1776 meters below sea level (mbsl). It was drilled as a 150 m deep geotechnical test hole for potential future deep drilling (5500 meters below seafloor [mbsf]) at proposed Site IBM-4 using the D/V Chikyu. Core from Site U1436 yielded a rich record of Late Pleistocene explosive volcanism, including a distinctive black glassy mafic ash layer that may record a large-volume subaqueous eruption on the Izu arc front. Because of the importance of this discovery, Site U1436 was drilled in three additional holes (U1436B, U1436C, and U1436D), as part of a contingency operation, in an attempt to get better recovery on the black glassy mafic ash layer and its enclosing sediments and to better constrain its thickness. IODP Site U1437 is located in the Izu rear arc, ~330 km west of the axis of the Izu-Bonin Trench and ~90 km west of the arc-front volcanoes Myojinsho and Myojin Knoll, at 2117 mbsl. The primary scientific objective for Site U1437 was to characterize “the missing half of the subduction factory” because numerous ODP/Integrated Ocean Drilling Program sites had been drilled in the arc-front to fore-arc region (i.e., ODP Site 782A Leg 126), but this was the first site to be drilled in the rear-arc region of the Izu arc. A complete view of the arc system is needed to understand the formation of oceanic arc crust and its evolution into continental crust. Site U1437 on the rear arc had excellent core recovery in Holes U1437B and U1437D, and we succeeded in hanging the longest casing ever in the history of R/V JOIDES Resolution scientific drilling (1085.6 m) in Hole U1437E and cored to 1806.5 mbsf. The stratigraphy at Site U1437 was divided into seven lithostratigraphic units (I–VII) that were distinguished from each other based on the proportions and characteristics of tuffaceous mud/mudstone and interbedded tuff, lapilli-tuff, and tuff-breccia. The section is much more mud rich than expected, with ~60% tuffaceous mud for the section as a whole (89% in the uppermost 433 m) and high sedimentation rates of 100–260 m/My for the upper 1320 m (Units I–V). The proportion (40%) and grain size of volcaniclastics are much smaller than expected for an intra-arc basin, composed half of ash/tuff and half of lapilli-tuff of fine grain size (clasts 〈3 cm). These volcaniclastics were deposited by suspension settling through water and from density currents, in relatively distal settings. Volcanic blocks are only sparsely scattered through the lowermost 25% of the section (Units VI and VII, 1320–1806.5 mbsf), which includes hyaloclastite, in situ quench-fragmented blocks, and a rhyolite peperite intrusion (i.e., proximal deposits). The transition from unconsolidated to lithified rocks occurred progressively; however, sediments were considered lithified from 427 mbsf (top of Hole U1437D) downward. Alteration resulted in destruction of fresh glass from ~750 mbsf downward, but minerals are less altered. Because of the alteration, the deepest biostratigraphic datum was at ~850 mbsf and the deepest paleomagnetic datum was at ~1300 mbsf. Additional age control deeper than ~1300 mbsf is provided by an age range of 10.97–11.85 Ma inferred from a nannofossil assemblage at ~1403 mbsf and a preliminary U-Pb zircon concordia intercept age of 13.6 +1.6/−1.7 Ma, measured postcruise on a rhyolite peperite in Unit VI at ~1390 mbsf. Based on the seismic profiles, the Miocene–Oligocene hiatus (~17–23 Ma) was predicted to lie at ~1250 mbsf, but strata at that depth (Unit V, 1120–1312 mbsf) are much younger (~9 Ma), indicating that we recovered a thicker Neogene section of volcaniclastics and associated igneous rocks than anticipated. Our preliminary interpretation of shipboard geochemistry of solids is that arc-front versus rear-arc sources can be distinguished for individual intervals in the upper, relatively distal 1320 m of the section (Units I–V), whereas data for the lower, proximal 25% of the section (Units VI–VII) overlap and exceed the compositional fields for Neogene rear-arc seamounts and Quaternary arc-front volcanoes. This suggests that the compositional divergence between arc-front and rear-arc magmas only fully developed after ~13 Ma.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-09
    Description: Extremely high-grade, lava-like welded ignimbrites are produced by many large explosive eruptions with volumes typically 10 1 –10 3 km 3 . However, understanding of the physical properties of these unusual deposits, and their transport and depositional mechanisms, is incomplete. The lava-like and rheomorphic Grey’s Landing ignimbrite, Idaho (western United States), provides abundant field evidence supporting the upward migration of a transient, 〈2-m-thick, sub-horizontal ductile shear zone at the interface between the pyroclastic density current and the deposit, through which all of the aggrading pyroclastic material passed. Here we use a combination of rheological experiments and thermo-mechanical modeling to test the syndepositional shear zone model. We show that syndepositional welding and ductile flow are achievable within a very restricted field of likely temperature–strain rate space, where rapid deformation is favored by higher emplacement temperatures (≥850 °C). The field of ductile deformation is broadened significantly by accounting for strain heating, which permits a sustained temperature increase of up to 250 °C within the shear zone and helps to explain the enormous extents of lava-like lithofacies and the intense rheomorphism recorded in extremely high-grade ignimbrites. Recognition of strain heating within rheomorphic ignimbrites suggests that large pyroclastic density currents may travel over a hot substrate, potentially hotter than the density current itself.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-07-26
    Description: The distribution of tectonic superstructure across the Shuswap metamorphic complex of southern British Columbia is explained by east-west–trending corrugations of the Okanagan Valley shear zone detachment. Geological mapping along the southern Okanagan Valley shear zone has identified 100-m-scale to kilometer-scale corrugations parallel to the extension direction, where synformal troughs hosting upper-plate units are juxtaposed between antiformal ridges of crystalline lower-plate rocks. Analysis of available structural data and published geological maps of the Okanagan Valley shear zone confirms the presence of ≤40-km-wavelength corrugations, which strongly influence the surface trace of the detachment system, forming spatially extensive salients and reentrants. The largest reentrant is a semicontinuous belt of late Paleozoic to Mesozoic upper-plate rocks that link stratigraphy on either side of the Shuswap metamorphic complex. Previously, these belts were considered by some to be autochthonous, implying minimal motion on the Okanagan Valley shear zone (≤12 km); conversely, our results suggest that they are allochthonous (with as much as 30–90 km displacement). Corrugations extend the Okanagan Valley shear zone much farther east than previously recognized and allow for hitherto separate gneiss domes and detachments to be reconstructed together to form a single, areally extensive Okanagan Valley shear zone across the Shuswap metamorphic complex. If this correlation is correct, the Okanagan Valley shear zone may have enveloped the entire Shuswap metamorphic complex as far east as the east-vergent Columbia River–Slocan Lake fault zones.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...