GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Semiconductors-Optical properties. ; Electronic books.
    Description / Table of Contents: This comprehensive reference describes the classifications, optical properties and applications of semiconductors. Accomplished experts in the field share their knowledge and examine new developments. This is an invaluable resource for engineers, scientists, academics and Industry R&D teams working in applied physics.
    Type of Medium: Online Resource
    Pages: 1 online resource (186 pages)
    Edition: 1st ed.
    ISBN: 9781000598957
    DDC: 537.6/226
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Semiconductor Optical Fibers -- Chapter 2: Optical Properties of Semiconducting Materials for Solar Photocatalysis -- Chapter 3: Semiconductor Optical Memory Devices -- Chapter 4: Semiconductor Optical Utilization in Agriculture -- Chapter 5: Nonlinear Optical Properties of Semiconductors, Principles, and Applications -- Chapter 6: Semiconductor Photoresistors -- Chapter 7: Semiconductor Photovoltaic -- Chapter 8: Progress and Challenges of Semiconducting Materials for Solar Photocatalysis -- Chapter 9: Linear Optical Properties of Semiconductors: Principles and Applications -- Chapter 10: Computational Techniques on Optical Properties of Metal-Oxide Semiconductors -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (604 pages)
    Edition: 1st ed.
    ISBN: 9781394238149
    Language: English
    Note: Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Aging Process of Microplastics in the Environment -- 1.1 Introduction -- 1.2 Impact of MPs on the Environment -- 1.3 Pristine and Aged Microplastics -- 1.4 Influence of Aging Processes in the Properties of MPs -- 1.4.1 Physical Properties -- 1.4.2 Chemical Properties -- 1.5 Simulation in the Laboratory of the Different Aging Effects -- 1.5.1 Radiation -- 1.5.2 Chemical Oxidation and Advanced Oxidation Process (AOP) -- 1.5.3 Mechanical Stress -- 1.5.4 Biodegradation -- 1.6 Conclusion -- Acknowledgments -- References -- Chapter 2 Life Cycle Assessment (LCA) of Bioplastics -- 2.1 Introduction -- 2.1.1 Life Cycle Assessment -- 2.1.2 Specialized LCA Software -- 2.2 Purpose and Approach of this Chapter -- 2.3 Development of Life Cycle Assessments for Bioplastics -- 2.3.1 Functional Unit and Scope Definition -- 2.3.2 Conventional Plastics vs. Bioplastics Analyses -- 2.3.3 Primary Applications for Which LCA was Performed -- 2.3.4 Evaluation Methods and Impact Categories Analyzed -- 2.3.5 End of Life (EoL) Scenarios -- 2.4 Discussion -- 2.4.1 Evaluation Methods and Impact Categories -- 2.4.2 End of Life (EoL) -- 2.5 Concluding Remarks -- References -- Chapter 3 Micro- and Nanoplastics-An Invisible Threat to Human Health -- 3.1 Introduction -- 3.2 Routes of Exposure -- 3.2.1 Inhalation -- 3.2.2 Dermal Contact -- 3.2.3 Ingestion -- 3.3 Phenomenon of Microplastics in Nourishment and Nutrients -- 3.3.1 Sodium Chloride -- 3.3.2 Marine Organisms (Crawfish, Mussel, Oyster): Techniques Used for Microplastic Identification -- 3.3.3 Canned and Prepackaged Foods -- 3.3.4 Soil Biome -- 3.4 Impact of Microplastics and Nanoplastics on Mammalian Health -- 3.5 Nanoplastics and Microplastics: Effects on Environment and Marine Life -- 3.6 Conclusions -- Acknowledgments. , Conflict of Interest -- References -- Chapter 4 Microplastics and Nanoplastics and Related Chemicals: The Physical-Chemical Interactions -- 4.1 Introduction to Micro- and Nanoplastics -- 4.2 Sources and Distribution of Micro- and Nanoplastics -- 4.3 Ecological Impacts of Micro- and Nanoplastics -- 4.4 Food Contamination and Human Exposure to Micro- and Nanoplastics -- 4.5 Toxicological Effects of Micro- and Nanoplastics on Human Health -- 4.5.1 Sources and Routes of Exposure -- 4.5.1.1 Ingestion -- 4.5.1.2 Inhalation -- 4.5.1.3 Dermal Exposure -- 4.5.2 Toxicological Effects -- 4.5.2.1 Inflammation and Immune Response -- 4.5.2.2 Genotoxicity and Carcinogenicity -- 4.5.2.3 Endocrine Disruption -- 4.6 Conclusions and Recommendations for Mitigating the Toxic Effects of Micro- and Nanoplastics -- 4.6.1 Reduce Plastic Production and Use -- 4.6.2 Improving Waste Management -- 4.6.3 Enhance Public Awareness -- 4.6.4 Develop and Implement Testing Protocols -- 4.6.5 Future Research -- References -- Chapter 5 Microplastics and Nanoplastics: Sources, Distribution, Behaviors, and Fate -- List of Abbreviations -- 5.1 Micro- and Nanoplastics: Principles and Sources -- 5.2 Micro- and Nanoplastic Behavior -- 5.2.1 Physiochemical Properties of MNPs: Toxicity and Reactivity -- 5.2.1.1 Petrochemical-Based Plastics -- 5.2.1.2 Bio-MNPs as a New Cause of Concern -- 5.2.1.3 Biological and Environmental Hazards of MNPs: The Effects on Biodiversity -- 5.3 Micro- and Nanoplastics' Distribution and Fate: From Terrestrial and Aquatic Environments to the Human Body -- 5.3.1 Terrestrial Environments -- 5.3.2 Aquatic Environments -- 5.3.3 Air and Atmosphere -- 5.3.4 Wastewater Treatment Plants -- 5.3.5 Cells and Organs -- 5.4 The Effect of Abiotic and Biotic Factors on MNPs' Behavior and Fate -- 5.5 Conclusions and Future Perspectives -- References. , Chapter 6 Microplastics and Nanoplastics in Food -- 6.1 Introduction -- 6.2 Sources of Micro-Nanoplastics Affecting Food -- 6.2.1 Micro-Nanoplastics in Seafood -- 6.2.2 Micro-Nanoplastics in Water and Beverages -- 6.2.3 Micro-Nanoplastics in Meat -- 6.2.4 Micro-Nanoplastics in Fruits and Vegetables -- 6.2.5 Micro-Nanoplastics in Other Food Sources -- 6.3 Impact of Micro-Nanoplastics -- 6.4 Direct Impact on Human Health -- 6.4.1 Oxidative Stress and Apoptosis -- 6.4.2 Autophagy -- 6.4.3 Damage to Different Body Cells -- 6.4.4 Inflammation -- 6.5 Affecting the Food Chain -- 6.6 Detection of Micro-Nanoplastics in Food -- 6.7 Conclusion -- References -- Chapter 7 Microplastics: Properties, Effect on the Environment and Removal Methods -- 7.1 An Insight Into Microplastics (MPs) -- 7.2 Microplastic Definitions -- 7.3 Properties of MPs -- 7.4 Primary and Secondary Microplastics -- 7.5 Microbeads -- 7.6 Impacts of MPs -- 7.6.1 Ecological Impacts -- 7.6.2 Chemical Impacts -- 7.6.3 Socio-Economic Impact -- 7.6.4 Removal of MPs -- 7.6.5 Chemical Method -- 7.6.6 Absorption and Filtration -- 7.6.7 Biological Method of Removal of MPs -- 7.7 Global Initiatives -- 7.7.1 United Nations Sustainable Development Goal (SDG 14) -- 7.8 Conclusion -- References -- Chapter 8 Identification, Quantification, and Presence of Microplastics and Nanoplastics in Beverages Around the World -- 8.1 Introduction -- 8.1.1 Water Consumption Around the World -- 8.1.2 Water in the Beverage Industry -- 8.1.3 Water Quality and Water Pollution -- 8.2 Methodology -- 8.3 Results -- 8.3.1 Countries where Studies were Performed -- 8.3.2 Techniques for Identification and Extraction of Microplastics -- 8.3.2.1 Selection of the Type of Beverages -- 8.3.2.2 Sample Preparation -- 8.3.2.3 Digestion -- 8.3.2.4 Filtration -- 8.3.2.5 Visual Identification and Characterization. , 8.3.2.6 Quality Control and Contamination Prevention -- 8.4 Microplastic Concentrations in Beverages -- 8.5 Microplastic Characterization in Beverages -- 8.5.1 Microplastic Sizes -- 8.5.2 Microplastic Types -- 8.5.3 Microplastic Colors -- 8.5.4 Microplastic Chemical Composition -- 8.6 Human Exposure -- 8.7 Conclusions -- References -- Chapter 9 Microplastics and Nanoplastics in Terrestrial Systems -- 9.1 Introduction -- 9.2 Micro/Nanoplastics in Soil -- 9.2.1 Source of Micro/Nano Plastics in Soils -- 9.2.2 Effect of Micro/Nanoplastics -- 9.2.2.1 Effect of Micro/Nanoplastics on the Physical and Chemical Properties of Soil -- 9.2.2.2 Effect of Micro/Nanoplastics on Soil Microorganisms -- 9.2.2.3 Effect of Micro/Nanoplastics on Soil Fauna -- 9.2.3 Degradation and Transport of Micro/Nanoplastics -- 9.3 Micro/Nanoplastics in Plants -- 9.3.1 Source of Micro/Nanoplastics -- 9.3.1.1 Plastic Mulching -- 9.3.1.2 Packaging -- 9.3.1.3 Irrigation Water -- 9.3.1.4 Sewage Treatment Plants (STPs) -- 9.3.1.5 Wastewater Treatment Plant (WWTP) -- 9.3.1.6 Air-Borne -- 9.3.1.7 Others -- 9.3.2 Migration or Uptake of Micro/Nanoplastics From Soil and Atmosphere -- 9.3.2.1 Uptake Pathways of Micro/Nanoplastics -- 9.3.3 Accumulation and Translocation -- 9.3.4 Effect of Micro- and Nano Plastics -- 9.3.4.1 Inhibitory Effect -- 9.3.4.2 Blocking Pores or Light -- 9.3.4.3 Mechanical Damage to Roots -- 9.3.4.4 Hindering Gene Expression -- 9.3.4.5 Release of Additives -- 9.3.4.6 Adsorption or Transport of Contaminant -- 9.3.4.7 Alteration of Soil Properties -- 9.3.4.8 Effect on Soil Microbes -- 9.3.4.9 Stimulatory Effect -- 9.3.4.10 Soil Microbial Community and Root Symbionts -- 9.4 Micro/Nanoplastics in Terrestrial Organism -- 9.4.1 Effect of Micro/Nanoplastics on Terrestrial Living Things -- 9.4.1.1 Ingestion -- 9.4.1.2 Gastrointestinal Tract. , 9.4.1.3 Microplastics on Respiratory Pathways -- 9.4.1.4 Interaction of Microplastics on Gut Microbiota -- 9.4.1.5 Endocrine System -- 9.5 Conclusion -- References -- Chapter 10 Microplastics in Cosmetics and Personal Care Products -- 10.1 Introduction -- 10.1.1 Personal Care Products (PCPs) and Cosmetics -- 10.1.1.1 Consumption and Categorization -- 10.1.1.2 Microbeads in PCPs and Cosmetics -- 10.1.1.3 Environmental Effects of Microplastics -- 10.2 Methodology -- 10.3 Results -- 10.4 Characterization of Microplastics in PCPs and Cosmetics -- 10.4.1 Types of Samples -- 10.4.2 Per Country of Origin -- 10.4.3 Forms of Microplastics -- 10.4.4 Colors of Microplastics Found in PCPs and Cosmetics -- 10.4.5 Sizes of Microplastics -- 10.4.6 Types of Polymers -- 10.4.7 Experimental Methods Used to Extract and Analyze Microplastics -- 10.4.7.1 Extraction Method -- 10.4.7.2 Particle Size Analysis Method -- 10.4.7.3 Polymer Type Analysis Methods -- 10.5 Interaction Between Microplastics from PCPs and Other Substances -- 10.6 Toxicity of Microplastics from Personal Care Products and Cosmetics -- 10.6.1 Toxicity of Different Types of MP -- 10.6.2 Effects in Different Organism's Groups -- 10.6.2.1 Bacteria -- 10.6.2.2 Plants -- 10.6.2.3 Phytoplankton -- 10.6.2.4 Algae -- 10.6.2.5 Animals -- 10.6.2.6 Humans (Cells) -- 10.7 Worldwide Bans on Microbeads in PCPs and Cosmetics -- 10.8 Conclusions -- References -- Chapter 11 Study on Microplastic Content in Cosmetic Products and Their Detrimental Effect on Human Health -- 11.1 Introduction -- 11.2 Cosmetic Products in India -- 11.3 Source of Plastics and Microplastics -- 11.4 Uptake and Bio-Accumulation of Microplastics -- 11.5 Effect of Microplastic Exposure on Human Health -- 11.5.1 Oxidative Stress and Apoptosis -- 11.5.2 Inflammation -- 11.5.3 Metabolic Homeostasis. , 11.6 Alternatives of Microplastics in Cosmetic Products.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (272 pages)
    Edition: 1st ed.
    ISBN: 9781394204557
    Language: English
    Note: Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Wind Energy: From Past to Present Technology -- 1.1 Introduction -- 1.2 Historical Background -- 1.3 Use of Wind Energy in Specific Countries -- 1.4 Wind Technology -- 1.4.1 Wind Energy Conversion System (WECS) -- 1.4.2 Electric Generator -- 1.4.3 Evolution of Power Electronics -- 1.4.4 Energy Storage Technology -- 1.5 Horizontal-Axis Wind Turbines (HAWTs) -- 1.5.1 History -- 1.5.2 Design -- 1.5.3 Components -- 1.5.4 Working Principle -- 1.5.5 Applications -- 1.6 Vertical Axis Wind Turbine (VAWT) -- 1.6.1 Working Principle -- 1.7 Current Technologies in Wind Power Generation -- 1.7.1 Buoyant Airborne Turbine (BAT) -- 1.7.2 Offshore Floating Wind Technology -- 1.8 Advantages -- 1.9 Disadvantages of Wind Energy -- 1.10 Conclusion -- References -- Chapter 2 Environmental Consequences of Wind Energy Technologies -- 2.1 Introduction -- 2.2 Impact of Wind Energy on the Environment -- 2.3 Key Environmental White Paper Issues Related to Wind Power -- 2.4 Individual Effects on Population Impacts -- 2.5 Comprehending the Overall Effects of Wind Power on Wildlife -- 2.6 Considerations for the Environment when Making Choices -- 2.7 Wind Power and Risk Management -- 2.8 Concerns About Using Wind Energy -- 2.9 Conclusion -- References -- Chapter 3 Important Issues and Future Opportunities for Huge Wind Turbines -- 3.1 Introduction -- 3.1.1 Visual Impact -- 3.1.2 Noise -- 3.1.3 Wildlife -- 3.1.4 Intermittent Energy Generation -- 3.2 Worldwide Wind Energy Forecast -- 3.2.1 Canada -- 3.2.2 Russia -- 3.2.3 India -- 3.2.4 United States of America -- 3.2.5 China -- 3.2.6 Germany -- 3.3 Increased Wind Penetrating Techniques -- 3.3.1 Energy Storage Systems -- 3.3.2 Advanced Forecasting Tools -- 3.3.3 Bucket Foundation. , 3.3.4 Advantages of Bucket Foundation -- 3.3.5 Limitations of Bucket Foundation -- 3.3.6 Monopile Foundation -- 3.3.7 Jacket Foundation -- 3.3.8 Floating Foundation -- 3.3.9 Tripod Foundation -- 3.4 India's Perspective for Wind Energy -- 3.4.1 Intermittency and Variability -- 3.4.2 Land Acquisition -- 3.4.3 Transmission Constraints -- 3.4.4 Limited Wind Resource Data -- 3.4.5 Financing Constraints -- 3.4.6 Environmental and Social Impacts -- 3.4.7 Policy and Regulatory Uncertainty -- 3.5 Progress of Technology -- 3.5.1 Larger and More Efficient Turbines -- 3.5.2 Advancements in Turbine Design -- 3.5.3 Improvements in Manufacturing and Installation -- 3.6 Conclusion -- References -- Chapter 4 Wind Hybrid Power Technologies -- 4.1 Introduction -- 4.2 Types of Hybrid Power Systems -- 4.3 Wind Hybrid Power Technologies -- 4.3.1 Wind Diesel Hybrid Power Technology -- 4.3.2 Wind Solar Hybrid Power Technology (WSHPT) -- 4.3.3 Wind Hydrogen Hybrid Power Technology (WHHPT) -- 4.3.4 Wind-Hydro Hybrid Power Technology (WHHPT) -- 4.3.5 Wind-Photovoltaic (PV) Hybrid Power Technology -- 4.4 Summary -- References -- Chapter 5 Theories Based on Technological Advances for Wind Energy -- 5.1 Introduction -- 5.2 Theoretical Background -- 5.2.1 Basic Principles of Wind Energy Conversion -- 5.2.2 Aerodynamics of Wind Turbines -- 5.2.3 Control Systems for Wind Turbines -- 5.3 Theories Based on Technological Advances -- 5.3.1 Wind Turbine Design Theory -- 5.3.1.1 Rotor Blade Design Theory -- 5.3.1.2 Aerodynamic Design Theory -- 5.3.2 Power Control Theory -- 5.3.2.1 Maximum Power Point Tracking Theory -- 5.3.2.2 Load Control Theory -- 5.3.3 Wind Farm Layout Theory -- 5.3.3.1 Turbine Placement Theory -- 5.3.3.2 Wake Effect Theory -- 5.3.4 Grid Integration Theory -- 5.3.4.1 Power Quality Theory -- 5.3.4.2 Stability Theory. , 5.4 Advancements in Wind Energy Technologies -- 5.5 Future Research Directions -- 5.6 Conclusion -- References -- Chapter 6 Wind Energy Hybrid Power Generation System with Hydrogen Storage -- 6.1 Introduction -- 6.2 Hydrogen Storage Systems -- 6.2.1 Solid-State Hydrogen Storage in Materials -- 6.3 Wind Energy Systems -- 6.4 Wind Energy Hybrid Power Generation System with Hydrogen Storage -- 6.4.1 Design and Optimization of a Wind Energy Hybrid Power Generation System with Hydrogen Storage -- 6.5 Conclusion -- References -- Chapter 7 Technologies Based on Reusable Wind Turbine Blades -- 7.1 Introduction -- 7.2 Wind Power Generation and the Importance of Wind Turbine Blades -- 7.2.1 Global Demand for Clean and Sustainable Energy -- 7.2.2 Role of Wind Turbines in Wind Power Generation -- 7.2.3 Impact of Wind Turbine Blades on Performance and Viability -- 7.3 Conventional Wind Turbine Blade Materials and Limitations -- 7.3.1 Overview of Conventional Blade Materials -- 7.3.2 Limitations in Terms of Recyclability and Environmental Impact -- 7.4 Advancements in Materials Engineering for Reusable Wind Turbine Blades -- 7.4.1 Composite Materials in Blade Design -- 7.4.2 Bio-Based Resins for Sustainable Blades -- 7.4.3 Additive Manufacturing Techniques for Blade Production -- 7.5 Challenges in Implementing Reusable Blade Technologies -- 7.5.1 Structural Integrity of Reusable Blades -- 7.5.2 Fatigue Resistance and Durability -- 7.5.3 Manufacturing Scalability and Cost-Effectiveness -- 7.6 Implications of Reusable Wind Turbine Blades -- 7.6.1 Cost Reduction and Enhanced Energy Production -- 7.6.2 Environmental Benefits and Reduction of Carbon Emissions -- 7.6.3 Policy Frameworks and Industry Collaboration -- 7.7 Testing, Modeling, and Simulation for Reliable Reusable Blade Designs -- 7.7.1 Importance of Rigorous Testing. , 7.7.2 Modeling and Simulation Techniques for Design Optimization -- 7.8 Future Prospects and Research Directions -- 7.8.1 Interdisciplinary Approaches for Sustainable Innovation -- 7.8.2 Collaboration Among Researchers, Engineers, and Stakeholders -- 7.8.3 Potential Directions for Future Research -- 7.9 Conclusion -- References -- Chapter 8 Wind Turbine Assessment: A Step-by-Step Approach -- 8.1 Introduction -- 8.2 Analytic Hierarchy Strategy -- 8.3 Results and Discussion -- 8.4 Conclusions -- References -- Chapter 9 Effect of Aerodynamics on Wind Turbine Design -- 9.1 Introduction -- 9.2 Air Properties Affecting Wind Turbines -- 9.3 Classical Blade Element Momentum Theory -- 9.4 Aerodynamic Performance Testing -- 9.4.1 Wind Tunnel Testing and Field Testing -- 9.4.2 Performance Testing of a Counter-Rotating Wind Turbine System -- 9.5 Effect of Aerodynamics on Wind Turbine Design Parameters -- 9.5.1 Solidity -- 9.5.2 Number of Blades -- 9.5.3 Different Ratios -- 9.5.3.1 Chord/Radius Ratio (c/R) -- 9.5.3.2 Height-to-Radius Ratio (H/R) -- 9.5.3.3 Blade Aspect Ratio (H/c) -- 9.5.4 Pitch -- 9.5.5 Strut Connection Point -- 9.5.6 Blade Reynolds Number (Re) -- 9.5.7 Strut Effects -- 9.5.8 Strut Arrangement -- 9.6 Wind Turbine Loads -- 9.7 Conclusions -- References -- Index -- Also of Interest -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (554 pages)
    Edition: 1st ed.
    ISBN: 9781119904984
    DDC: 363.7394
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 Introduction to Water Pollution -- 1.1 Pollution -- 1.2 What is Water Pollution? -- 1.3 Prevalence of Water Pollution -- 1.4 Categories of Water Pollution -- 1.4.1 Point Sources -- 1.4.2 Non-Point Sources -- 1.4.3 Transboundary Pollution -- 1.4.4 Problems Caused by Point and Non-Point Sources -- 1.5 Water Pollutants -- 1.5.1 Organic Pollutants -- 1.5.2 Inorganic Pollutants -- 1.5.3 Biological Pollutants -- 1.5.4 Radiological Pollutants -- 1.6 Kinds of Water Pollution -- 1.6.1 Groundwater Pollution -- 1.6.2 Domestic Water Pollution -- 1.6.3 River Water Pollution -- 1.6.4 Surface Water Pollution -- 1.7 Determination of Water Quality Parameters -- 1.7.1 pH -- 1.7.2 Color -- 1.7.3 Turbidity -- 1.7.4 Hardness -- 1.7.5 BOD -- 1.7.6 TDS -- 1.8 Sources of Water Pollution -- 1.8.1 Urbanization -- 1.8.2 Agriculture -- 1.8.3 Industrialization -- 1.8.4 Population Growth -- 1.8.5 Oil Spillage -- 1.9 Effects of Water Pollution on Humans and Animals -- 1.9.1 Diarrheal Diseases -- 1.9.2 Cholera -- 1.9.3 Microcystins -- 1.9.4 Sound Effects of Contamination of Water on Aquatic Animals -- 1.10 Prevention of Water Pollution -- 1.10.1 Strategies -- 1.10.1.1 Water Maintenance -- 1.10.1.2 Wastewater Treatment -- 1.10.1.3 Devices -- 1.10.1.4 Air Pollution Prevention -- 1.10.1.5 Organic Farming -- 1.10.1.6 Stormwater Management -- 1.10.1.7 Plastic Waste Reduction -- 1.10.1.8 Environmental Education -- 1.11 Control and Prevention of Water Pollution by Biotechnology -- 1.12 Conclusion -- References -- Chapter 2 Impact of Water Pollution & -- Perspective Techniques to Mitigate It: An Overview -- Graphical Abstract -- 2.1 Introduction -- 2.2 Causes of Water Pollution -- 2.2.1 Discharge -- 2.2.2 Oil Spill -- 2.2.3 Littering -- 2.2.4 Ship Demolition Waste -- 2.3 Effects of Water Pollution on Plant Growth. , 2.4 Techniques of Treating Water Pollution -- 2.4.1 Techniques -- 2.4.1.1 Biofiltration -- 2.4.1.2 Rapid Sand Filter -- 2.4.1.3 Adsorption -- 2.4.1.4 Magnetic Extraction -- 2.4.1.5 Membrane Filtration -- 2.4.1.6 Electrocoagulation -- 2.4.1.7 Activated Sludge -- 2.4.2 Oil Spillage -- 2.4.2.1 Skimming -- 2.4.2.2 Organoclays -- 2.4.2.3 Grease Traps -- 2.4.2.4 Chemical Dispersant/Emulsifier -- 2.4.2.5 In Situ Burning (ISB) -- 2.4.2.6 Magnetic-Nanomaterials -- 2.4.3 Halogenated Aromatic Hydrocarbon -- 2.4.3.1 Bioremediation -- 2.4.3.2 Photocatalytic Degradation -- 2.4.3.3 Electrokinetic Remediation -- 2.4.3.4 Green Nano Remediation -- 2.5 Removal of Pollutants Through Different Nanomaterial -- 2.5.1 Disinfection -- 2.5.1.1 Silver Nanoparticles -- 2.5.1.2 TiO2 Nanoparticles -- 2.5.1.3 Carbon Nano Tubes -- 2.5.2 Desalination -- 2.5.3 Heavy Metal and Ion Removal -- 2.5.4 Organic Pollutant Removal -- 2.5.5 CNTs -- 2.5.6 TiO2 Nanoparticles -- 2.5.7 Zero-Valent Iron -- 2.5.8 Other Nanomaterials -- 2.6 Discussion and Conclusion -- References -- Chapter 3 Pollution of Ground and Surface Waters with Agrochemicals -- 3.1 Introduction -- 3.2 A Recounting of the Global Production and Consumption of Agrochemicals -- 3.2.1 Pesticides -- 3.2.2 Fertilizers -- 3.3 Characteristics of Agrochemicals -- 3.4 Occurrences and Levels of Pollution -- 3.4.1 Pollution of Groundwater -- 3.4.2 Pollution of Surface Waters -- 3.5 Fates of Agrochemicals in Ground and Surface Waters -- 3.6 Emerging Views and Perspectives -- 3.7 Concluding Remarks -- References -- Chapter 4 Fecal Waste Drives Antimicrobial Resistance: Source Tracking, Wastewater Discriminant Analysis and Management -- 4.1 Introduction -- 4.2 Antibiotics/ARB/ARGs: Source Tracking -- 4.3 Fecal Pollution and the Public Health Risks -- 4.3.1 Public Health Risks and Environmental Impacts. , 4.4 Fecal Indicator Bacteria and Discriminant Analysis -- 4.5 Management Strategies to Combat Antibiotic Resistance -- 4.5.1 Technologies Towards ARB/ARGs Removal from Wastewater -- 4.6 Conclusion -- Acknowledgments -- References -- Chapter 5 Harmful Effects of Water Pollution -- 5.1 Introduction -- 5.2 Physical Factors -- 5.2.1 Temperature -- 5.2.2 Heat -- 5.2.3 Suspended Solids -- 5.2.4 Colour -- 5.3 Chemical Factors -- 5.3.1 Lowering of Dissolved Oxygen -- 5.3.2 Oxygen Demanding Material in Water Bodies -- 5.3.2.1 Biochemical Oxygen Demand (BOD) -- 5.3.2.2 Chemical Oxygen Demand (COD) -- 5.3.3 Eutrophication -- 5.3.4 Chemicals Affecting Human Health -- 5.3.4.1 Fluoride -- 5.3.4.2 Nitrate -- 5.3.4.3 Petrochemicals and Chlorinated Solvents -- 5.3.4.4 Pesticides -- 5.3.5 Acidity (pH) -- 5.3.6 Nitrification -- 5.3.7 Acid Rain -- 5.3.8 Characteristics of Pollutants in Stationary Water Bodies -- 5.3.9 Nanoparticles -- 5.3.10 Pharmaceuticals and Personal Care Products (PPCPs) -- 5.3.11 Heavy Metals -- 5.3.11.1 Mercury -- 5.3.11.2 Arsenic -- 5.3.11.3 Lead -- 5.3.12 Salts -- 5.3.13 Radioactive Materials -- 5.3.14 Oils and Grease -- 5.3.15 Endocrine Disrupting Chemicals (EDC) -- 5.4 Biological Factors -- 5.4.1 Ecology of Stationary Water Bodies -- 5.4.2 Algal Blooms -- 5.4.3 Pathogenic Organisms -- 5.5 Conclusion -- References -- Chapter 6 Parasites: Sources, Method of Analysis and Treatment -- 6.1 Introduction -- 6.1.1 Pathogens -- 6.2 Method of Analysis -- 6.2.1 Sampling Preparations and Procedures -- 6.2.2 Sampling for Parasites -- 6.3 Methods to Find Concentration of Parasites -- 6.3.1 Sedgwick Rafter Method -- 6.3.2 Method of Centrifuge -- 6.3.3 Method of Using Millipore Filter -- 6.4 Procedures for Enumeration of Parasites -- 6.4.1 Standardizing of Tiles Whipple Micron Meter -- 6.4.1.1 Reporting in Cubic Standard Units. , 6.4.2 Drop Method for Counting -- 6.5 Waterborne Protozoan Parasites -- 6.6 Protozoan Parasite Testing in Water -- 6.7 Waterborne Helminths -- 6.8 Water Treatment -- 6.8.1 Chemical Treatment -- 6.8.1.1 Chlorination -- 6.8.1.2 Method of Chloramination -- 6.8.1.3 Method of Applying Chlorine Dioxide -- 6.8.1.4 Ozonation -- 6.8.2 Physical Treatment -- 6.8.2.1 Treatment Using the Ultraviolet (UV) Radiation -- 6.8.3 Treatment Using Mechanical Method -- 6.8.3.1 Method of Membrane Filter -- 6.8.3.2 Radiation -- 6.9 Nanotechnology -- 6.9.1 Silver (Ag) -- 6.9.2 Chitosan -- 6.9.3 Titanium Dioxide (TiO2) -- 6.9.4 Zinc Oxide (ZnO) -- 6.9.5 Fullerenes -- 6.9.6 Nanotubes of Carbon -- 6.10 Conclusions -- References -- Chapter 7 Oils: Source, Method of Analysis and Treatment -- 7.1 Introduction -- 7.2 Oils Causing Pollution and Their Sources -- 7.3 Method of Analysis -- 7.4 Treatment -- 7.4.1 Treatment Requirements -- 7.4.2 Waste Reduction -- 7.4.3 Management of Cutting Fluids -- 7.4.4 Overview of Treatment Methods -- 7.4.5 Physical Treatment -- 7.4.5.1 Gravity Separation Systems (Separators) -- 7.4.5.2 Hydrocyclones -- 7.4.5.3 Air Flotation -- 7.4.5.4 Membrane Filtration -- 7.4.5.5 Activated Carbon Adsorption -- 7.4.5.6 Filtration (Membranes, Meshes, and Fibers) -- 7.4.5.7 Evaporation -- 7.4.6 Chemical Treatment -- 7.4.6.1 Coagulation and Flocculation -- 7.4.6.2 Electrocoagulation -- 7.4.6.3 Oxidation Technologies -- 7.4.7 Biological Treatments -- 7.4.8 Latest Treatment Trends -- 7.4.8.1 Biological Treatment -- 7.4.8.2 Advanced Oxidation Processes (AOPs) -- 7.4.8.3 Membrane Separation Technology -- 7.4.8.4 Coagulation/Flocculation Technology -- 7.4.8.5 Sorption Technology -- 7.4.9 Treatment Costs -- 7.5 Conclusion -- References -- Chapter 8 Phosphate: Sources, Method of Analysis and Treatment -- 8.1 Introduction -- 8.2 Sources of Phosphate Pollution in Water. , 8.3 Method of Analysis -- 8.4 Phosphate Removal Treatment -- 8.4.1 Phosphate Removal through Lanthanum and Lanthanum Composite -- 8.4.2 Phosphate Removal by Nanomaterial and Nano Composite -- 8.4.3 Phosphate Removal through Iron and Iron Composite -- 8.4.4 Phosphate Removal by Metal Composite -- 8.4.5 Phosphate Removal by Zirconium and Its Composite -- 8.4.6 Phosphate Removal by Biochar and Biochar-Based Composite -- 8.4.7 Phosphate Removal by Aluminum Oxide Its Composite-Based Absorbent -- 8.4.8 Phosphate Removal by Calcium -- 8.4.9 Phosphate Removal by Organic Metal Framework -- 8.4.10 Phosphate Removal by Waste-Based Adsorbent -- 8.4.11 Phosphate Removal by Clay and Clay Composites -- 8.4.12 Phosphate Removal by Bioremediation -- 8.4.13 Phosphate Removal by Natural Polymer and Its Composite -- 8.4.14 Phosphate Removal by Advanced Methods -- 8.5 Conclusion -- References -- Chapter 9 Endocrine Disruptors: Sources, Method of Analysis and Treatment -- 9.1 Introduction -- 9.1.1 Definition of Endocrine Disruptors -- 9.1.2 Main Endocrine Disruptors -- 9.1.2.1 Classification Based on the EU Regulations for REACH -- 9.1.2.2 Other Classifications -- 9.1.3 Human Exposure to EDCs -- 9.1.4 Impact of EDCs on Human Health -- 9.2 Parabens: Sources, Method of Analysis and Treatment -- 9.2.1 Sources -- 9.2.2 Method of Analysis -- 9.2.3 Treatment of Parabens -- 9.3 Alkylphenol Ethoxylates: Sources, Method of Analysis and Treatment -- 9.3.1 Sources -- 9.3.2 Method of Analysis -- 9.3.3 Treatment -- 9.4 Bisphenols: Sources, Method of Analysis and Treatment -- 9.4.1 Sources -- 9.4.2 Method of Analysis -- 9.4.3 Treatment -- 9.5 Phthalates: Sources, Method of Analysis and Treatment -- 9.5.1 Sources -- 9.5.2 Analysis -- 9.5.3 Treatment of Phthalates -- 9.6 Conclusions -- References -- Chapter 10 Water Pollution by Heavy Metals and Their Impact on Human Health. , Abbreviations.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Sewage-Purification. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (460 pages)
    Edition: 1st ed.
    ISBN: 9783030803346
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.70
    Language: English
    Note: Intro -- Foreword -- Contents -- About the Editors -- Chapter 1: Analytical Methods for the Determination of Heavy Metals in Water -- 1.1 Introduction -- 1.2 Total Concentration and Speciation Analysis -- 1.3 Health and Legislation -- 1.4 Sample Preparation for Elemental Analysis of Heavy Metals -- 1.4.1 Solid-Phase Extraction -- 1.4.1.1 Classic Solid-Phase Extraction -- 1.4.1.1.1 Modern Sorbents for Classic Solid-Phase Extraction -- 1.4.1.1.2 Micro Solid-Phase Extraction -- 1.4.1.2 Dispersive Solid-Phase Extraction -- 1.4.1.2.1 Dispersion Techniques -- 1.4.1.2.2 Modern Sorbents for Dispersive Solid-Phase Extraction and Dispersive Micro-Solid Phase Extraction -- Nanostructured Materials -- Hybrid Materials -- 1.4.1.3 Magnetic Solid-Phase Extraction -- 1.4.1.3.1 Advanced Magnetic Sorbents -- 1.4.2 Liquid-Liquid Extraction -- 1.4.2.1 Modern Solvents Used in Liquid-Liquid Extraction -- 1.4.2.1.1 Non-ionic or Zwitterionic Surfactants -- 1.4.2.1.2 Ionic Liquids -- 1.4.2.1.3 Deep Eutectic Solvents -- 1.4.2.2 Novel Liquid-Liquid Microextraction Techniques -- 1.4.2.2.1 Dispersive Liquid-Liquid Microextraction Techniques -- 1.4.2.2.2 In-Situ Phase Separation Techniques -- 1.4.2.2.3 Cloud Point Extraction -- 1.4.2.2.4 Non-dispersive Microextraction Techniques -- 1.4.2.3 Liquid-Liquid Extraction in Flow Analysis -- 1.5 Analytical Techniques for Heavy Metal Detection -- 1.5.1 Spectroscopic Techniques -- 1.5.1.1 Atomic Absorption Spectroscopy -- 1.5.1.2 Atomic Fluorescence Spectrometry -- 1.5.1.3 Atomic Emission Spectrometry -- 1.5.1.4 Inductively Coupled Plasma-Mass Spectrometry -- 1.5.1.4.1 Single Particle Inductively Coupled Plasma-Mass Spectrometry -- 1.5.1.5 Laser-Induced Breakdown Spectroscopy -- 1.5.1.6 X-Ray Fluorescence -- 1.5.1.7 UV-Vis Spectrophotometry -- 1.5.2 Electrochemical Techniques -- 1.5.2.1 Potentiostatic Techniques. , 1.5.2.1.1 Amperometry -- 1.5.2.1.2 Chronocoulometry -- 1.5.2.1.3 Voltammetric Techniques -- 1.5.2.2 Galvanostatic Stripping Chronopotentiometry -- 1.5.2.3 Electrochemiluminescence -- 1.5.3 Other Methods -- 1.5.3.1 Ion Chromatography -- 1.5.3.2 Surface-Enhanced Raman Spectroscopy -- 1.5.3.3 Bio Methods -- 1.6 Conclusions and Future Perspectives -- References -- Chapter 2: Olive-Oil Waste for the Removal of Heavy Metals from Wastewater -- 2.1 Introduction -- 2.2 Olive Tree Pruning as Biosorbent of Heavy Metals from Aqueous Solutions -- 2.2.1 Characterization -- 2.2.2 Biosorption Tests -- 2.3 Olive Stone as Biosorbent of Heavy Metals from Aqueous Solutions -- 2.3.1 Characterization -- 2.3.2 Biosorption Tests -- 2.4 Olive Pomace and Olive-Cake as Biosorbents of Heavy Metals from Aqueous Solutions -- 2.4.1 Characterization -- 2.4.2 Biosorption Tests -- 2.5 Other Valorization Opportunities for Olive-Oil Waste -- 2.6 Conclusions -- References -- Chapter 3: Metal Oxide Composites for Heavy Metal Ions Removal -- 3.1 Introduction -- 3.2 Issues in Environmental Remediation -- 3.3 Different Types of Magnetic Sorbents -- 3.3.1 Iron Oxide Modified Nanoparticle -- 3.3.2 Zeolite -- 3.3.3 Silica -- 3.3.4 Polymer Functionalization -- 3.3.5 Chitosan and Alginate -- 3.3.6 Activated Carbon -- 3.3.7 Carbon Nanotubes (CNTs) and Graphene -- 3.3.8 Agricultural Wastes -- 3.4 Case Studies -- 3.4.1 Characterization -- 3.4.2 Factors Affecting Sorption Processes -- 3.4.3 Agro-Based Magnetic Biosorbents Recovery and Reusability -- 3.5 Conclusion -- References -- Chapter 4: Two-Dimensional Materials for Heavy Metal Removal -- 4.1 Introduction -- 4.2 Heavy Metal Ions Removal Mechanism -- 4.2.1 Surface Complexation -- 4.2.2 Van der Waals Interaction -- 4.2.3 Ion Exchange -- 4.3 Different Types of Two-Dimensional Material for Heavy Metal Removal. , 4.3.1 Graphene-Based Two-Dimensional Materials -- 4.3.1.1 Structure -- 4.3.1.2 Graphene-Based Materials for Heavy Metal Removal -- 4.3.2 Dichalcogenides -- 4.3.2.1 Structure -- 4.3.2.2 Molybdenum Disulfide for Heavy Metal Removal -- 4.3.3 MXenes -- 4.3.3.1 Structure -- 4.3.3.2 MXenes for Heavy Metal Removal -- 4.3.4 Clay Minerals -- 4.3.4.1 Structure -- 4.3.4.2 Clay Mineral for Heavy Metal Removal -- 4.3.5 Layered Double Hydroxides -- 4.3.5.1 Structure -- 4.3.5.2 Layered Double Hydroxides for Heavy Metal Removal -- 4.3.6 Layered Zeolites -- 4.3.6.1 Structure -- 4.3.6.2 Layered Zeolites for Heavy Metal Removal -- 4.3.7 Other Two-Dimensional Materials -- 4.4 Heavy Metal Removal Other than Adsorption -- 4.5 Conclusions and Perspectives -- Appendix: List of Two-Dimensional Materials that Mentioned in this Chapter for Heavy Metal Removal and their Removal Capacities -- References -- Chapter 5: Membranes for Heavy Metals Removal -- 5.1 Introduction -- 5.2 Electrodialysis -- 5.2.1 Electrodialysis Applied to Metal Removal -- 5.2.2 Principle -- 5.2.3 Evaluation and Control Parameters -- 5.2.4 Use in Electroplating Industry -- 5.2.4.1 Zinc -- 5.2.4.2 Chromium -- 5.2.4.3 Copper -- 5.2.4.4 Nickel -- 5.2.5 Use in Mining and Mineral Processing Industry -- 5.2.6 Final Considerations -- References -- Chapter 6: Metal Oxides for Removal of Heavy Metal Ions -- 6.1 Introduction -- 6.2 Adsorption Methods -- 6.3 Metal Oxides for the Removal of Heavy Metal Ions from Water -- 6.3.1 Titanium Dioxide -- 6.3.2 Manganese Dioxide -- 6.3.3 Iron Oxide -- 6.3.4 Aluminum Oxide -- 6.3.5 Binary Metal Oxides -- 6.4 Conclusion -- References -- Chapter 7: Organic-Inorganic Ion Exchange Materials for Heavy Metal Removal from Water -- 7.1 Introduction -- 7.2 Ion Exchange Process -- 7.3 Ion Exchange Materials -- 7.3.1 Inorganic Ion Exchangers -- 7.3.2 Organic Ion Exchangers. , 7.4 Heavy Metal Removal with Ion Exchange Materials -- 7.4.1 Lead (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.2 Mercury (II) Removal from Waste Water with Organic-Inorganic Ion Exchangers -- 7.4.3 Cadmium (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.4 Nickel (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.5 Chromium (III, VI) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.6 Copper (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.7 Zinc (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.5 Conclusion -- References -- Chapter 8: Low-Cost Technology for Heavy Metal Cleaning from Water -- 8.1 Introduction -- 8.2 Sources and Impact -- 8.3 Different Routes of Contamination -- 8.4 Conventional Water Treatment Methods -- 8.4.1 Preliminary Treatment -- 8.4.2 Secondary Water Treatment -- 8.4.3 Tertiary Water Treatment -- 8.4.4 Membrane Filtration -- 8.5 Advanced Technology for Heavy Metal Ion Removal -- 8.5.1 Nano-Adsorption -- 8.5.2 Molecularly-Imprinted Polymers -- 8.5.3 Layered Double Hydroxides (LDH) and Covalent-Organic Framework (COF) -- 8.5.4 Emerging Membrane Technologies -- 8.6 Low-Cost and Biotechnological Approaches -- 8.6.1 Biosorption -- 8.6.2 Microbial Remediation -- 8.6.3 Biotechnological Strategies -- 8.7 Conclusion -- References -- Chapter 9: Use of Nanomaterials for Heavy Metal Remediation -- 9.1 General Introduction -- 9.2 Heavy Metals in the Environment -- 9.2.1 Characteristics of Selected Heavy Metals -- 9.3 Wastewater Treatment -- 9.4 Nanomaterials -- 9.4.1 Clay Minerals -- 9.4.2 Layered Double Hydroxide and Their Mixed-Oxides Counterparts -- 9.4.3 Zeolites -- 9.4.4 Two-dimensional Early Transition Metal Carbides and Carbonitrides -- 9.4.5 Metal Based Nanoparticles. , 9.4.5.1 Zero-valent Metals -- 9.4.5.2 Metal Oxides -- 9.4.6 Carbon-based Materials -- 9.4.6.1 Carbon Nanotubes -- 9.4.6.2 Fullerenes -- 9.4.6.3 Graphene -- 9.4.6.4 Graphene Oxide -- 9.4.6.5 Reduced Graphene Oxide -- 9.4.6.6 Graphitic Carbon Nitride -- 9.4.7 Metal Organic Frameworks -- 9.5 Disadvantages of Using Nanomaterials -- 9.6 Conclusions -- References -- Chapter 10: Ecoengineered Approaches for the Remediation of Polluted River Ecosystems -- 10.1 Introduction -- 10.2 Occurrence of Pollutants, Emerging Contaminants and Their Riverine Fates -- 10.3 Hazardous Effects of Water Contaminants on Aquatic and Terrestrial Biota -- 10.4 Historic Concepts of River Bioremediation -- 10.5 Physico-chemical River Remediation Methods -- 10.6 Eco-engineered River Water Remediation Technologies -- 10.6.1 Plant Based River Remediation Systems -- 10.6.1.1 Constructed Wetlands -- 10.6.1.2 Ecological Floating Wetlands, Beds and Islands -- 10.6.1.3 Eco-tanks -- 10.6.1.4 Bio-racks -- 10.6.2 Microorganisms Based River Remediation Systems -- 10.6.2.1 Biofilm Based Eco-engineered Treatment Systems -- 10.6.2.1.1 Bio-filters in River Bioremediation -- 10.6.2.2 Periphyton Based Technologies -- 10.7 In Situ Emerging Integrated Systems for the River Bioremediation -- 10.8 Concluding Remarks -- References -- Chapter 11: Ballast Water Definition, Components, Aquatic Invasive Species, Control and Management and Treatment Technologies -- 11.1 Introduction -- 11.2 Component of Ballast Water -- 11.3 Aquatic Invasive Species -- 11.4 The International Convention for the Control and Management of Ships Ballast Water and Sediments -- 11.5 IMO Standards for Ballast Water Quality -- 11.6 Management Options of Ballast Water -- 11.7 Ballast Water Treatment Technologies -- 11.7.1 Mechanical Treatment -- 11.7.2 Physical Treatment -- 11.7.2.1 Ultrasound and Cavitation. , 11.7.3 Chemical Treatment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Geochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (208 pages)
    Edition: 1st ed.
    ISBN: 9781119710080
    DDC: 551.9
    Language: English
    Note: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Toxic Geogenic Contaminants in Serpentinitic Geological Systems: Occurrence, Behavior, Exposure Pathways, and Human Health Risks -- 1.1 Introduction -- 1.2 Serpentinitic Geological Systems -- 1.2.1 Nature, Occurrence, and Geochemistry -- 1.2.2 Occurrence and Behavior of Toxic Contaminants -- 1.3 Human Exposure Pathways -- 1.3.1 Occupational Exposure -- 1.3.2 Non-Occupational Exposure Routes -- 1.4 Human Health Risks and Their Mitigation -- 1.4.1 Health Risks -- 1.4.2 Mitigating Human Exposure and Health Risks -- 1.5 Future Perspectives -- 1.6 Conclusions -- Acknowledgements -- References -- 2 Benefits of Geochemistry and Its Impact on Human Health -- 2.1 Introduction -- 2.2 General Overview of Geochemistry and Human Health -- 2.2.1 Types of Geochemistry -- 2.2.2 Some Beneficial Effect of Some Mineral With Health Benefits -- 2.2.3 Application of Geochemistry on Human Health -- 2.3 Conclusion and Recommendations -- References -- 3 Applications of Geochemistry in Livestock: Health and Nutritional Perspective -- 3.1 Introduction -- 3.2 General and Global Perspective About Geochemistry in Livestock -- 3.3 Types of Geochemistry and Their Numerous Benefits -- 3.3.1 Analytical Geochemistry -- 3.3.2 Isotope Geochemistry -- 3.3.3 Low Temperature Geochemistry -- 3.3.4 Organic and Petroleum Geochemistry -- 3.4 Application of Geochemistry in Livestock -- 3.5 Geochemistry and Animal Health -- 3.6 General Overview of Geochemistry in Livestock's Merits of Geochemistry/Essential Minerals in Livestocks -- 3.6.1 Specific Examples of Authors That Have Used Essential Minerals in Livestock -- 3.6.2 Livestock in Relation to Geominerals -- 3.6.3 Trace Minerals Parallel Importance in Livestock -- 3.6.4 Heavy Metals Impact Livestock -- 3.7 Conclusion and Recommendations. , References -- 4 Application in Geochemistry Toward the Achievement of a Sustainable Agricultural Science -- 4.1 Introduction -- 4.2 General Overview on the Utilization of Geochemistry and Their Wide Application on Agriculture -- 4.2.1 Classification -- 4.2.2 Chemical Composition of Rocks -- 4.2.3 Effect of Some Beneficial Minerals in Agriculture -- 4.2.4 Beneficial Mineral Nutrients That are Crucial to the Development of Plants -- 4.3 Role of Geochemistry in Agriculture -- 4.4 Geochemical Effects of Heavy Metals on Crops Health -- 4.5 Conclusion and Recommendations -- References -- 5 Geochemistry, Extent of Pollution, and Ecological Impact of Heavy Metal Pollutants in Soil -- 5.1 Introduction -- 5.2 Material and Methods -- 5.2.1 Review Process -- 5.2.2 Ecological Risk Index -- 5.3 Toxic Heavy Metal and Their Impact to the Ecosystems -- 5.3.1 Arsenic -- 5.3.2 Cadmium -- 5.3.3 Chromium -- 5.3.4 Copper -- 5.3.5 Lead -- 5.3.6 Nickel -- 5.3.7 Zinc -- 5.4 Metal Pollution in Soil Across the Globe -- 5.5 Ecological and Human Health Risk Impacts of Heavy Metals -- 5.6 Conclusion -- References -- 6 Isotope Geochemistry -- 6.1 Introduction -- 6.2 Basic Definitions -- 6.2.1 The Notation -- 6.2.2 The Fractionation Factor -- 6.2.3 Isotope Fractionation -- 6.2.4 Mass Dependent and Independent Fractionations -- 6.3 Application of Traditional Isotopes in Geochemistry -- 6.3.1 Geothermometer -- 6.3.2 Isotopes in Biological System -- 6.3.3 Isotopes in Archaeology -- 6.3.4 Isotopes in Fossils and the Earliest Life -- 6.3.5 Isotopes in Hydrothermal and Ore Deposits -- 6.4 Non-Traditional Isotopes in Geochemistry -- 6.4.1 Application in Tracing of Source -- 6.4.2 Application in Process Tracing -- 6.4.3 Biological Cycling -- 6.5 Conclusion -- References -- 7 Environmental Geochemistry -- 7.1 Introduction -- 7.2 Overview of the Environmental Geochemistry -- 7.3 Conclusions. , 7.4 Abbreviations -- Acknowledgment -- References -- 8 Medical Geochemistry -- 8.1 Introduction -- 8.2 The Evolution of Geochemistry -- 8.3 This Science has Expanded Considerably to Become Distinct Branches -- 8.3.1 Cosmochemistry -- 8.3.2 The Economic Importance of Geochemistry -- 8.3.3 Analytical Geochemistry -- 8.3.4 Geochemistry of Radioisotopes -- 8.3.5 Medical Geochemistry and Human Health -- 8.3.6 Environmental Health and Safety -- 8.4 Conclusion -- References -- 9 Inorganic Geochemistry -- 9.1 Introduction -- 9.2 Elements and the Earth -- 9.2.1 Iron -- 9.2.2 Oxygen -- 9.2.3 Silicon -- 9.2.4 Magnesium -- 9.3 Geological Minerals -- 9.3.1 Quartz -- 9.3.2 Feldspar -- 9.3.3 Amphibole -- 9.3.4 Pyroxene -- 9.3.5 Olivine -- 9.3.6 Clay Minerals -- 9.3.7 Kaolinite -- 9.3.8 Bentonite, Montmorillonite, Vermiculite, and Biotite -- 9.4 Characterization Techniques -- 9.4.1 Powder X-Ray Diffraction -- 9.4.2 X-Ray Fluorescence Spectra -- 9.4.3 X-Ray Photoelectron Spectra -- 9.4.4 Electron Probe Micro-Analysis -- 9.4.5 Inductively Coupled Plasma Spectrometry -- 9.4.6 Fourier Transform Infrared Spectroscopy -- 9.4.7 Scanning Electron Microscopy Analysis -- 9.4.8 Energy Dispersive X-Ray Analysis -- 9.5 Conclusion -- References -- 10 Introduction and Scope of Geochemistry -- 10.1 Introduction -- 10.1.1 Periodic Table and Electronic Configuration -- 10.2 Periodic Properties -- 10.2.1 Ionization Enthalpy -- 10.2.2 Electron Affinity -- 10.2.3 Electro-Negativity -- 10.3 Chemical Bonding -- 10.3.1 Ionic Bond -- 10.3.2 Covalent Bond -- 10.3.3 Metallic Bond -- 10.3.4 Hydrogen Bond -- 10.3.5 Van der Waals Forces -- 10.4 Geochemical Classification and Distribution of Elements -- 10.4.1 Lithophiles -- 10.4.2 Siderophiles -- 10.4.3 Chalcophiles -- 10.4.4 Atmophiles -- 10.4.5 Biophiles -- 10.5 Chemical Composition of the Earth -- 10.6 Classification of Earth's Layers. , 10.6.1 Based on Chemical Composition -- 10.6.2 Based on Physical Properties -- 10.7 Spheres of the Earth -- 10.7.1 Geosphere/Lithosphere -- 10.7.2 Hydrosphere -- 10.7.3 Biosphere -- 10.7.4 Atmosphere -- 10.7.5 Troposphere -- 10.7.6 Stratosphere -- 10.7.7 Mesosphere -- 10.7.8 Thermosphere and Ionosphere -- 10.7.9 Exosphere -- 10.8 Sub-Disciplines of Geochemistry -- 10.9 Scope of Geochemistry -- 10.10 Conclusion -- References -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Polysaccharides-Industrial applications. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (800 pages)
    Edition: 1st ed.
    ISBN: 9781119711391
    Language: English
    Note: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Natural Polysaccharides From Aloe vera L. Gel (Aloe barbadensis Miller): Processing Techniques and Analytical Methods -- 1.1 Introduction -- 1.1.1 Gel Composition from A. vera -- 1.2 Applications of A. vera Mucilaginous Gel or Fractions -- 1.3 Aloe vera Gel Processing -- 1.3.1 Obtaining Polysaccharide Fraction or Acemannan -- 1.4 Analytical Methods Applied -- 1.4.1 Total Carbohydrates, Oligosaccharides, Acemannan and Free Sugars -- 1.4.2 Analytical Techniques -- 1.4.2.1 Chromatography Analysis -- 1.4.2.2 Infrared Spectroscopy (IR) -- 1.4.2.3 Nuclear Magnetic Resonance Spectroscopy -- 1.4.2.4 Mass Spectrometry -- 1.4.2.5 Ultraviolet-Visible Spectroscopy -- 1.4.2.6 Comprehensive Microarray Polymer Profiling -- 1.5 Conclusion -- References -- 2 Cell Wall Polysaccharides -- 2.1 Introduction to Cell Wall -- 2.2 Plant Cell Wall Polysaccharides -- 2.2.1 Cellulose -- 2.2.2 Hemicellulose -- 2.2.2.1 Xyloglucan -- 2.2.2.2 Xylans -- 2.2.2.3 Mannans -- 2.2.3 Callose -- 2.2.4 Pectic Polysaccharides -- 2.2.4.1 Homogalacturonan (HG) -- 2.2.4.2 Arabinan -- 2.3 Algal Cell Wall Polysaccharides -- 2.3.1 Alginates -- 2.3.2 Sulfated Galactans -- 2.3.3 Fucoidans -- 2.4 Fungal Cell Wall Polysaccharides -- 2.4.1 Glucan -- 2.4.2 Chitin and Chitosan -- 2.5 Bacterial Cell Wall Polysaccharides -- 2.5.1 Peptidoglycan -- 2.5.2 Lipopolysaccharides -- References -- 3 Marine Polysaccharides: Properties and Applications -- 3.1 Introduction -- 3.2 Polysaccharide Origins -- 3.3 Properties -- 3.3.1 Cellulose -- 3.3.2 Chitosan -- 3.3.3 Alginate -- 3.3.4 Carrageenan -- 3.3.5 Agar -- 3.3.6 Porphyran -- 3.3.7 Fucoidan -- 3.3.8 Ulvan -- 3.3.9 Exopolysaccharides From Microalgae -- 3.4 Applications of Polysaccharides -- 3.4.1 Biomedical Applications -- 3.4.1.1 Cellulose -- 3.4.1.2 Chitosan. , 3.4.1.3 Alginate -- 3.4.2 Food Applications -- 3.4.2.1 Cellulose -- 3.4.2.2 Chitosan -- 3.4.2.3 Alginates -- 3.4.2.4 Carrageenan -- 3.4.2.5 Agar -- 3.4.3 Pharmaceutical and Nutraceutical Applications -- 3.4.3.1 Cellulose -- 3.4.3.2 Chitosan -- 3.4.3.3 Alginate -- 3.4.3.4 Carrageenan -- 3.4.3.5 Porphyran -- 3.4.3.6 Fucoidan -- 3.4.4 Agriculture -- 3.5 Conclusions -- References -- 4 Seaweed Polysaccharides: Structure, Extraction and Applications -- 4.1 Introduction -- 4.1.1 Agar -- 4.1.2 Carrageenan -- 4.1.3 Alginate (Alginic Acid, Algin) -- 4.1.4 Fucoidan -- 4.1.5 Laminaran -- 4.1.6 Ulvan -- 4.2 Conclusion -- References -- 5 Agars: Properties and Applications -- 5.1 History and Origin of Agar -- 5.1.1 Agarophytes Used in Agar Manufacturing -- 5.2 Physical Properties of Agar Producing Seaweeds -- 5.3 Agar Manufacturing -- 5.3.1 Types of Agar Manufacturing -- 5.3.1.1 Freeze-Thaw Method -- 5.3.1.2 Syneresis Method -- 5.4 Structure of Agar -- 5.5 Heterogeneity of Agar -- 5.6 Physico-Chemical Characteristics of Agar -- 5.7 Chemical Characteristics of Agar -- 5.8 Factors Influencing the Characteristics of Agar -- 5.8.1 Techniques to Analyze the Fine Chemical Structure of Agar -- 5.8.2 Synergies and Antagonisms of Agar Gels -- 5.9 Uses of Agar in Various Sectors -- 5.9.1 Applications of Agar in Food Industry -- 5.9.2 Application of Agar in Harvesting Insects and Worms -- 5.9.3 Vegetable Tissue Culture Formulations -- 5.9.4 Culture Media for Microbes -- 5.9.5 Industrial Applications of Agar -- 5.10 Conclusion and Discussion -- References -- 6 Biopolysaccharides: Properties and Applications -- 6.1 Structure and Classification of Biopolysaccharides -- 6.1.1 Structure -- 6.1.2 Classification -- 6.1.3 Structural Characterization Techniques -- 6.2 Uses and Applications of Biopolysaccharides -- 6.2.1 Functional Fibers -- 6.2.2 Biomedicine. , 6.2.2.1 Tissue Engineering -- 6.2.2.2 Wound Healing -- 6.2.2.3 Drug Loading and Delivery -- 6.2.2.4 Therapeutics -- 6.2.3 Cosmetics -- 6.2.4 Foods and Food Ingredients -- 6.2.5 Biofuels -- 6.2.6 Wastewater Treatment -- 6.2.7 Textiles -- 6.3 Conclusion -- References -- 7 Chitosan Derivatives: Properties and Applications -- 7.1 Introduction -- 7.2 Properties of Chitosan Derivatives -- 7.2.1 Physiochemical Properties -- 7.2.2 Functional Properties -- 7.2.3 Biological Properties of Chitosan -- 7.3 Applications of Chitosan Derivatives -- 7.3.1 Anticancer Agents -- 7.3.2 Bone Tissue Material Formation -- 7.3.3 Wound Healing, Tissue Regeneration and Antimicrobial Resistance -- 7.3.4 Drug Delivery -- 7.3.5 Chromatographic Separations -- 7.3.6 Waste Management -- 7.3.7 Food Industry -- 7.3.8 In Cosmetics -- 7.3.9 In Paint as Antifouling Coatings -- 7.4 Conclusions -- Acknowledgement -- References -- 8 Green Seaweed Polysaccharides Inventory of Nador Lagoon in North East Morocco -- 8.1 Introduction -- 8.2 Nador Lagoon: Situation and Characteristics -- 8.3 Seaweed -- 8.4 Polysaccharides in Seaweed -- 8.5 Algae Polysaccharides in Nador Lagoon's Seaweed -- 8.5.1 C. prolifera -- 8.5.1.1 Sulfated Galactans -- 8.5.2 U. rigida & -- E. intestinalis -- 8.5.2.1 Ulvan -- 8.5.3 C. adhaerens, C. bursa, C. tomentosum -- 8.5.3.1 Sulfated Arabinans -- 8.5.3.2 Sulfated Arabinogalactans -- 8.5.3.3 Mannans -- 8.6 Conclusion -- References -- 9 Salep Glucomannan: Properties and Applications -- 9.1 Introduction -- 9.2 Production -- 9.3 Composition and Physicochemical Structure -- 9.4 Rheological Properties -- 9.5 Purification and Deacetylation -- 9.6 Food Applications -- 9.6.1 Beverage -- 9.6.2 Ice Cream and Emulsion Stabilizing -- 9.6.3 Edible Film/Coating -- 9.6.4 Gelation -- 9.7 Health Benefits -- 9.8 Conclusions and Future Trends -- References. , 10 Exudate Tree Gums: Properties and Applications -- 10.1 Introduction -- 10.1.1 Gum Arabic -- 10.1.2 Gum Karaya -- 10.1.3 Gum Kondagogu -- 10.1.4 Gum Ghatti -- 10.1.5 Gum Tragacanth -- 10.1.6 Gum Olibanum -- 10.2 Nanobiotechnology Applications -- 10.3 Minor Tree Gums -- 10.4 Conclusions -- Acknowledgment -- References -- 11 Cellulose and its Derivatives: Properties and Applications -- 11.1 Introduction -- 11.2 Main Raw Materials -- 11.3 Composition and Chemical Structure of Lignocellulosic Materials -- 11.4 Cellulose: Chemical Backbone and Crystalline Formats -- 11.5 Cellulose Extraction -- 11.5.1 Mechanical Methods -- 11.5.2 Chemical Methods -- 11.6 Cellulose Products and its Derivatives -- 11.7 Main Applications -- 11.8 Conclusion -- References -- 12 Starch and its Derivatives: Properties and Applications -- 12.1 Introduction -- 12.2 Physicochemical and Functional Properties of Starch -- 12.2.1 Size, Morphology and Crystallinity of Starch Granules -- 12.2.2 Physical Properties due to Associated Lipids, Proteins and Phosphorus With Starch Granules -- 12.2.3 Solubility and Swelling Capacity of Starch -- 12.2.4 Gelatinization and Retrogradation of Starch -- 12.2.5 Birefringence and Glass Transition Temperature of Starch -- 12.2.6 Rheological and Thermal Properties of Starch -- 12.2.7 Transmittance and Opacity of Starch -- 12.2.8 Melt Processability of Starch -- 12.3 Modification of Starch -- 12.3.1 Physical Modification of Starch -- 12.3.2 Chemical Modification of Starch -- 12.3.3 Dual Modification of Starch -- 12.3.4 Enzymatic Modification of Starch -- 12.3.5 Genetic Modification of Starch -- 12.4 Application of Starch and its Derivatives -- 12.4.1 In Food Industry -- 12.4.2 In Paper Industry -- 12.4.3 Starch as Binders -- 12.4.4 In Detergent Products -- 12.4.5 As Biodegradable Thermoplastic Materials or Bioplastics. , 12.4.6 In Pharmaceutical and Cosmetic Industries -- 12.4.7 As Industrial Raw Materials -- 12.4.8 As Adsorbents for Environmental Applications -- 12.4.9 As Food Packaging Materials -- 12.4.10 In Drug Delivery -- 12.4.11 As Antimicrobial Films and Coatings -- 12.4.12 In Advanced Functional Materials -- 12.5 Conclusion -- References -- 13 Crystallization of Polysaccharides -- 13.1 Introduction -- 13.2 Principles of Crystallization of Polysaccharides -- 13.3 Techniques for Crystallinity Measurement -- 13.4 Crystallization Behavior of Polysaccharides -- 13.4.1 Cellulose -- 13.4.2 Chitosan and Chitin -- 13.4.3 Starch -- 13.5 Polymer/Polysaccharide Crystalline Nanocomposites -- 13.6 Conclusion -- References -- 14 Polysaccharides as Novel Materials for Tissue Engineering Applications -- 14.1 Introduction -- 14.2 Types of Scaffolds for Tissue Engineering -- 14.3 Biomaterials for Tissue Engineering -- 14.4 Polysaccharide-Based Scaffolds for Tissue Engineering -- 14.4.1 Alginate-Based Scaffolds -- 14.4.2 Chitosan-Based Scaffolds -- 14.4.3 Cellulose-Based Scaffolds -- 14.4.4 Dextran and Pullulan-Based Scaffolds -- 14.4.5 Starch-Based Scaffolds -- 14.4.6 Xanthan-Based Scaffolds -- 14.4.7 Glycosaminoglycans-Based Scaffolds -- 14.5 Current Challenges and Future Perspectives -- Acknowledgements -- References -- 15 Structure and Solubility of Polysaccharides -- 15.1 Introduction -- 15.2 Polysaccharide Structure and Solubility in Water -- 15.3 Solubility and Molecular Weight -- 15.4 Solubility and Branching -- 15.5 Polysaccharide Solutions -- 15.6 Conclusions -- Acknowledgments -- References -- 16 Polysaccharides: An Efficient Tool for Fabrication of Carbon Nanomaterials -- 16.1 Introduction -- 16.2 Aerogels -- 16.2.1 Plant and Bacterial Cellulose -- 16.2.2 Carbon Derived From Nanocrystalline Cellulose of Plant Origin. , 16.2.3 Carbon Aerogels Produced From Bacterial Cellulose.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Organic compounds-Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (590 pages)
    Edition: 1st ed.
    ISBN: 9780323996440
    DDC: 620.1180286
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Hydrogen. ; Hydrogen industry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (746 pages)
    Edition: 1st ed.
    ISBN: 9781119829577
    DDC: 665.81
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Transition Metal Oxides in Solar-to-Hydrogen Conversion -- 1.1 Introduction -- 1.2 Solar-to-Hydrogen Conversion Processes Utilizing Transition Metal Oxides -- 1.2.1 Photocatalysis -- 1.2.2 Photoelectrocatalysis -- 1.2.3 Thermochemical Water Splitting -- 1.3 Transition Metal Oxides in Solar-to-Hydrogen Conversion Processes -- 1.3.1 Photocatalysis and Photoelectrocatalysis -- 1.3.1.1 TiO2 -- 1.3.1.2 α-Fe2O3 -- 1.3.1.3 CuO/Cu2O -- 1.3.2 Thermochemical Water Splitting -- 1.3.2.1 Fe3O4/FeO Redox Pair -- 1.3.2.2 CeO2/Ce2O3 and CeO/CeO2-ä Redox Pairs -- 1.3.2.3 ZnO/Zn Redox Pair -- 1.4 Conclusions and Future Perspectives -- References -- Chapter 2 Catalytic Conversion Involving Hydrogen from Lignin -- List of Abbreviations -- 2.1 Introduction -- 2.1.1 Background of Bio-Refinery and Lignin -- 2.1.2 Lignin as an Alternate Source of Energy -- 2.1.3 Lignin Isolation Process -- 2.2 Catalytic Conversion of Lignin -- 2.2.1 Lignin Reductive Depolymerization into Aromatic Monomers -- 2.2.2 Catalytic Hydrodeoxydation (HDO) of Lignin -- 2.2.3 Hydrodeoxydation (HDO) of Lignin-Derived-Bio-Oil -- Summary and Outlook -- References -- Chapter 3 Solar-Hydrogen Coupling Hybrid Systems for Green Energy -- 3.1 Concept of Green Sources and Green Storage -- 3.2 Coupling of Green to Green -- 3.3 Solar Energy-Hydrogen System -- 3.3.1 Photoelectrochemical Hydrogen Production -- 3.3.1.1 PEC Materials -- 3.3.1.2 Photoelectrochemical Systems -- 3.3.2 Electrochemical Hydrogen Production -- 3.3.2.1 Polymer Electrolyte Membrane Electrolysis Cell (PEMEC) -- 3.3.2.2 Alkaline Electrolysis Cell (AEC) -- 3.3.2.3 Solid Oxide Electrolysis Cell (SOEC) -- 3.3.3 Fuel Cell -- 3.3.4 Photovoltaic -- 3.4 Thermochemical Systems -- 3.5 Photobiological Hydrogen Production -- 3.6 Conclusion -- References. , Chapter 4 Green Sources to Green Storage on Solar-Hydrogen Coupling -- 4.1 Introduction -- 4.1.1 Hybrid System -- 4.2 Concentrated Solar Thermal H2 Production -- 4.3 Thermochemical Aqua Splitting Technology for Solar-H2 Generation -- 4.4 Solar to Hydrogen Through Decarbonization of Fossil Fuels -- 4.4.1 Solar Cracking -- 4.5 Solar Thermal-Based Hydrogen Generation Through Electrolysis -- 4.6 Photovoltaics-Based Hydrogen Production -- 4.7 Conclusion -- References -- Chapter 5 Electrocatalysts for Hydrogen Evolution Reaction -- 5.1 Introduction -- 5.2 Parameters to Evaluate Efficient HER Catalysts -- 5.2.1 Overpotential (o.p) -- 5.2.2 Tafel Plot -- 5.2.3 Stability -- 5.2.4 Faradaic Efficiency and Turnover Frequency -- 5.2.5 Hydrogen Bonding Energy (HBE) -- 5.3 Categories of HER Catalysts -- 5.3.1 Noble Metal-Based Catalysts -- 5.3.2 Non-Noble Metal-Based Catalysts -- 5.3.3 Metal-Free 2D Nanomaterials -- 5.3.4 Transition Metal Dichalcogenides -- 5.3.5 Transition Metal Oxides and Hydroxides -- 5.3.6 Transition Metal Phosphides -- 5.3.7 MXenes (Transition Metal Carbides and Nitrides) -- Conclusion -- References -- Chapter 6 Recent Progress on Metal Catalysts for Electrochemical Hydrogen Evolution -- 6.1 Introduction -- 6.1.1 Type of Water Electrolysis Technologies -- 6.1.1.1 Alkaline Electrolysis (AE) -- 6.1.1.2 Proton Exchange Membrane Electrolysis (PEME) -- 6.1.1.3 Solid Oxide Electrolysis (SOE) -- 6.2 Mechanism of Hydrogen Evolution Reaction (HER) -- 6.2.1 Performance Evaluation of Catalyst -- 6.3 Various Electrocatalysts for Hydrogen Evolution Reaction (HER) -- 6.3.1 Noble Metal Catalysts for HER -- 6.3.1.1 Platinum-Based Catalysts -- 6.3.1.2 Palladium Based Catalysts -- 6.3.1.3 Ruthenium Based Catalysts -- 6.3.2 Non-Noble Metal Catalysts -- 6.3.2.1 Transition Metal Phosphides (TMP) -- 6.3.2.2 Transition Metal Chalcogenides. , 6.3.2.3 Transition Metal Carbides (TMC) -- 6.4 Conclusion and Future Aspects -- References -- Chapter 7 Dark Fermentation and Principal Routes to Produce Hydrogen -- 7.1 Introduction -- 7.2 Biohydrogen Production from Organic Waste -- 7.2.1 Crude Glycerol -- 7.2.1.1 Dark Fermentation of Crude Glycerol to Biohydrogen and Bio Products -- 7.2.2 Dairy Waste -- 7.2.2.1 Dark Fermentation of Dairy Waste to Biohydrogen and Bioproducts -- 7.2.3 Fruit Waste -- 7.2.3.1 Dark Fermentation of Fruit Waste to Hydrogen and Bioproducts -- 7.3 Anaerobic Systems -- 7.3.1 Continuous Multiple Tube Reactor -- 7.4 Conclusion and Future Perspectives -- Acknowledgements -- References -- Chapter 8 Catalysts for Electrochemical Water Splitting for Hydrogen Production -- 8.1 Introduction -- 8.2 Water Splitting and Their Products -- 8.3 Different Methods Used for Water Splitting -- 8.3.1 Setup for Water Splitting Systems at a Basic Level -- 8.3.2 Photocatalysis -- 8.3.3 Electrolysis -- 8.4 Principles of PEC and Photocatalytic H2 Generation -- 8.5 Electrochemical Process for Water Splitting Application -- 8.5.1 Water Splitting Through Electrochemistry -- 8.6 Different Materials Used in Water Splitting -- 8.6.1 Water Oxidation (OER) Materials -- 8.6.2 Developing Materials for Hydrogen Synthesis -- 8.6.3 Material Stability for Water Splitting -- 8.7 Mechanism of Electrochemical Catalysis in Water Splitting and Hydrogen Production -- 8.7.1 Electrochemical Water Splitting with Cheap Metal-Based Catalysts -- 8.7.2 Catalysts with Only One Atom -- 8.7.3 Electrochemical Water Splitting Using Low-Cost Metal-Free Catalysts -- 8.8 Water Splitting and Hydrogen Production Materials Used in Electrochemical Catalysis -- 8.8.1 Metal and Alloys -- 8.8.2 Metal Oxides/Hydroxides and Chalogenides -- 8.8.3 Metal Carbides, Borides, Nitrides, and Phosphides. , 8.9 Uses of Hydrogen Produced from Water Splitting -- 8.9.1 Water Splitting Generates Hydrogen Energy -- 8.9.2 Photoelectrochemical (PEC) Water Splitting -- 8.9.3 Thermochemical Water Splitting -- 8.9.4 Biological Water Splitting -- 8.9.5 Fermentation -- 8.9.6 Biomass and Waste Conversions -- 8.9.7 Solar Thermal Water Splitting -- 8.9.8 Renewable Electrolysis -- 8.9.9 Hydrogen Dispenser Hose Reliability -- 8.10 Conclusion -- References -- Chapter 9 Challenges and Mitigation Strategies Related to Biohydrogen Production -- 9.1 Introduction -- 9.2 Limitation and Mitigation Approaches of Biohydrogen Production -- 9.2.1 Physical Issues and Their Mitigation Approaches -- 9.2.1.1 Operating Temperature Issue and Its Control -- 9.2.1.2 Hydraulic Retention Time (HRT) and Optimization -- 9.2.1.3 High Hydrogen Partial Pressure - Implication and Overcoming the Issue -- 9.2.1.4 Membrane Fouling Issues and Solutions -- 9.2.2 Biological Issues and Their Mitigation Approaches -- 9.2.2.1 Start-Up Issue and Improvement Through Bioaugmentation -- 9.2.2.2 Biomass Washout Issue and Solution Through Cell Immobilization -- 9.2.3 Chemical Issues and Their Mitigation Approaches -- 9.2.3.1 pH Variation and Its Regulation -- 9.2.3.2 Limiting Nutrient Loading and Optimization -- 9.2.3.3 Inhibitor Secretion and Its Control -- 9.2.3.4 Byproduct Formation and Its Exploitation -- 9.2.4 Economic Issues and Ways to Optimize Cost -- 9.3 Conclusion and Future Direction -- Acknowledgements -- References -- Chapter 10 Continuous Production of Clean Hydrogen from Wastewater by Microbial Usage -- 10.1 Introduction -- 10.2 Wastewater for Biohydrogen Production -- 10.3 Photofermentation -- 10.3.1 Continuous Photofermentation -- 10.3.2 Factors Affecting Photofermentation Hydrogen Production -- 10.3.2.1 Inoculum Condition and Substrate Concentration -- 10.3.2.2 Carbon and Nitrogen Source. , 10.3.2.3 Temperature -- 10.3.2.4 pH -- 10.3.2.5 Light Intensity -- 10.3.2.6 Immobilization -- 10.4 Dark Fermentation -- 10.4.1 Continuous Dark Fermentation -- 10.4.2 Factors Affecting Hydrogen Production in Continuous Dark Fermentation -- 10.4.2.1 Start-Up Time -- 10.4.2.2 Organic Loading Rate -- 10.4.2.3 Hydraulic Retention Time -- 10.4.2.4 Temperature -- 10.4.2.5 pH -- 10.4.2.6 Immobilization -- 10.5 Microbial Electrolysis Cell -- 10.5.1 Mechanism of Microbial Electrolysis Cell -- 10.5.2 Wastewater Treatment and Hydrogen Production -- 10.5.3 Factors Affecting Microbial Electrolysis Cell Performance -- 10.5.3.1 Inoculum -- 10.5.3.2 pH -- 10.5.3.3 Temperature -- 10.5.3.4 Hydraulic Retention Time -- 10.5.3.5 Applied Voltage -- 10.6 Conclusions -- References -- Chapter 11 Conversion Techniques for Hydrogen Production and Recovery Using Membrane Separation -- 11.1 Introduction -- 11.2 Conversion Technique for Hydrogen Production -- 11.2.1 Photocatalytic Hydrogen Generation via Particulate System -- 11.2.2 Photoelectrochemical Cell (PEC) -- 11.2.3 Photovoltaic-Photoelectrochemical Cell (PV-PEC) -- 11.2.4 Electrolysis -- 11.3 Hydrogen Recovery Using Membrane Separation (H2/O2 Membrane Separation) -- 11.3.1 Polymeric Membranes -- 11.3.2 Porous Membranes -- 11.3.3 Dense Metal Membranes -- 11.3.4 Ion-Conductive Membranes -- 11.4 Conclusion -- Acknowledgements -- References -- Chapter 12 Geothermal Energy-Driven Hydrogen Production Systems -- Abbreviations -- 12.1 Introduction -- 12.2 Hydrogen - A Green Fuel and an Energy Carrier -- 12.3 Production of Hydrogen -- 12.3.1 Fossil Fuel-Based -- 12.3.2 Non-Fossil Fuel-Based -- 12.4 Geothermal Energy -- 12.4.1 Introductory View -- 12.4.2 Types and Occurrences -- 12.5 Hydrogen Production From Geothermal Energy -- 12.5.1 Hydrogen Production Systems -- 12.5.2 Working Fluids. , 12.5.3 Assimilation of Solar and Geothermal Energy.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Nanotechnology-Health aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (446 pages)
    Edition: 1st ed.
    ISBN: 9780323951722
    DDC: 615.1
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...