GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Erscheinungszeitraum
  • 1
    ISSN: 1365-2958
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Medizin
    Notizen: The Bacillus subtilis glpFK operon encoding the glycerol transport facilitator (GlpF) and glycerol kinase (GlpK) is induced by glycerol-3-P and repressed by rapidly metabolizable sugars. Carbon catabolite repression (CCR) of glpFK is partly mediated via a catabolite response element cre preceding glpFK. This operator site is recognized by the catabolite control protein A (CcpA) in complex with one of its co-repressors, P-Ser-HPr or P-Ser-Crh. HPr is a component of the phosphoenolpyruvate:sugar phos-photransferase system (PTS), and Crh is an HPr homologue. The hprK-encoded HPr kinase phosphorylates HPr and Crh at Ser-46. But in neither ccpA nor hprK mutants was expression of a glpF′–lacZ fusion relieved from CCR, as a second, CcpA-independent CCR mechanism implying the terminator tglpFK, whose formation is prevented by the glycerol-3-P-activated antiterminator GlpP, is operative. Deletion of tglpFK led to elevated expression of the glpF′–lacZ fusion and to partial relief from CCR. CCR completely disappeared in ΔtglpFK mutants carrying a disruption of ccpA or hprK. The tglpFK-requiring CCR mechanism seems to be based on insufficient synthesis of glycerol-3-P, as CCR of glpFK was absent in ccpA mutants growing on glycerol-3-P or synthesizing H230R mutant GlpK. In cells growing on glycerol, glucose prevents the phosphorylation of GlpK by P~His-HPr. P~GlpK is much more active than GlpK, and the absence of P~GlpK formation in ΔptsHI strains prevents glycerol metabolism. As a consequence, only small amounts of glycerol-3-P will be formed in glycerol and glucose-exposed cells (inducer exclusion). The uptake of glycerol-3-P via GlpT provides high concentrations of this metabolite in the ccpA mutant and allows the expression of the glpF′–lacZ fusion even when glucose is present. Similarly, despite the presence of glucose, large amounts of glycerol-3-P are formed in a glycerol-exposed strain synthesizing GlpKH230R, as this mutant GlpK is as active as P~GlpK.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 50 (2003), S. 0 
    ISSN: 1365-2958
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Medizin
    Notizen: The catabolic control protein CcpA is the highly conserved regulator of carbon metabolism in Gram-positive bacteria. We recently showed that Lactococcus lactis, a fermenting bacterium in the family of Streptococcaceae, is capable of respiration late in growth when haem is added to aerated cultures. As the start of respiration coincides with glucose depletion from the medium, we hypothesized that CcpA is involved in this metabolic switch and investigated its role in lactococcal growth under aeration and respiration conditions. Compared with modest changes observed in fermentation growth, inactivation of ccpA shifts metabolism to mixed acid fermentation under aeration conditions. This shift is due to a modification of the redox balance via derepression of NADH oxidase, which eliminates oxygen and decreases the NADH pool. CcpA also plays a decisive role in respiration metabolism. Haem addition to lag phase ccpA cells results in growth arrest and cell mortality. Toxicity is due to oxidative stress provoked by precocious haem uptake. We identify the repressor of the haem transport system and show that it is a target of CcpA activation. We propose that CcpA-mediated repression of haem uptake is a means of preventing oxidative damage at the start of exponential growth. CcpA thus appears to govern a regulatory network that coordinates oxygen, iron and carbon metabolism.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1574-6968
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Abstract The genes encoding the CryIVB and CryIVD crystal polypeptides of B. thuringiensis subsp. israelensis were cloned indepently on a stable shuttle vector, and transfered into B. sphaericus 2297. Recombinant cells expressed the B. thuringiensis toxins during sporulation and were shown to be toxic to Aedes aegypti fourth instar larvae, whereas the parental strain was not.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...