GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2024
    In:  Journal of Advances in Modeling Earth Systems Vol. 16, No. 5 ( 2024-05)
    In: Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), Vol. 16, No. 5 ( 2024-05)
    Abstract: We investigate vertical localization for strongly coupled atmosphere‐ocean data assimilation in a realistic global model Strong coupling can improve data assimilation effectiveness over weak coupling when large ensembles are used We present a method for optimal observation space localization, called EORL, and demonstrate its performance in offline experiments
    Type of Medium: Online Resource
    ISSN: 1942-2466 , 1942-2466
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2024
    detail.hit.zdb_id: 2462132-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 145, No. 724 ( 2019-10), p. 2876-2908
    Abstract: Historical reanalyses that span more than a century are needed for a wide range of studies, from understanding large‐scale climate trends to diagnosing the impacts of individual historical extreme weather events. The Twentieth Century Reanalysis (20CR) Project is an effort to fill this need. It is supported by the National Oceanic and Atmospheric Administration (NOAA), the Cooperative Institute for Research in Environmental Sciences (CIRES), and the U.S. Department of Energy (DOE), and is facilitated by collaboration with the international Atmospheric Circulation Reconstructions over the Earth initiative. 20CR is the first ensemble of sub‐daily global atmospheric conditions spanning over 100 years. This provides a best estimate of the weather at any given place and time as well as an estimate of its confidence and uncertainty. While extremely useful, version 2c of this dataset (20CRv2c) has several significant issues, including inaccurate estimates of confidence and a global sea level pressure bias in the mid‐19th century. These and other issues can reduce its effectiveness for studies at many spatial and temporal scales. Therefore, the 20CR system underwent a series of developments to generate a significant new version of the reanalysis. The version 3 system (NOAA‐CIRES‐DOE 20CRv3) uses upgraded data assimilation methods including an adaptive inflation algorithm; has a newer, higher‐resolution forecast model that specifies dry air mass; and assimilates a larger set of pressure observations. These changes have improved the ensemble‐based estimates of confidence, removed spin‐up effects in the precipitation fields, and diminished the sea‐level pressure bias. Other improvements include more accurate representations of storm intensity, smaller errors, and large‐scale reductions in model bias. The 20CRv3 system is comprehensively reviewed, focusing on the aspects that have ameliorated issues in 20CRv2c. Despite the many improvements, some challenges remain, including a systematic bias in tropical precipitation and time‐varying biases in southern high‐latitude pressure fields.
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Climate of the Past, Copernicus GmbH, Vol. 18, No. 4 ( 2022-04-28), p. 919-933
    Abstract: Abstract. European flood frequency and intensity change on a multidecadal scale. Floods were more frequent in the 19th (central Europe) and early 20th century (western Europe) than during the mid-20th century and again more frequent since the 1970s. The causes of this variability are not well understood and the relation to climate change is unclear. Palaeoclimate studies from the northern Alps suggest that past flood-rich periods coincided with cold periods. In contrast, some studies suggest that more floods might occur in a future, warming world. Here we address the contribution of atmospheric circulation and of warming to multidecadal flood variability. For this, we use long series of annual peak streamflow, daily weather data, reanalyses, and reconstructions. We show that both changes in atmospheric circulation and moisture content affected multidecadal changes of annual peak streamflow in central and western Europe over the past two centuries. We find that during the 19th and early 20th century, atmospheric circulation changes led to high peak values of moisture flux convergence. The circulation was more conducive to strong and long-lasting precipitation events than in the mid-20th century. These changes are also partly reflected in the seasonal mean circulation and reproduced in atmospheric model simulations, pointing to a possible role of oceanic variability. For the period after 1980, increasing moisture content in a warming atmosphere led to extremely high moisture flux convergence. Thus, the main atmospheric driver of flood variability changed from atmospheric circulation variability to water vapour increase.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2018
    In:  Journal of Advances in Modeling Earth Systems Vol. 10, No. 8 ( 2018-08), p. 1736-1739
    In: Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), Vol. 10, No. 8 ( 2018-08), p. 1736-1739
    Abstract: Historical reanalyses can bridge the gap between climate and weather by providing a century‐long history of the weather The first coupled reanalysis of the twentieth century was recently released with promising results
    Type of Medium: Online Resource
    ISSN: 1942-2466 , 1942-2466
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2018
    detail.hit.zdb_id: 2462132-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Monthly Weather Review Vol. 147, No. 4 ( 2019-04-01), p. 1237-1256
    In: Monthly Weather Review, American Meteorological Society, Vol. 147, No. 4 ( 2019-04-01), p. 1237-1256
    Abstract: An important issue in developing a forecast system is its sensitivity to additional observations for improving initial conditions, to the data assimilation (DA) method used, and to improvements in the forecast model. These sensitivities are investigated here for the Global Forecast System (GFS) of the National Centers for Environmental Prediction (NCEP). Four parallel sets of 7-day ensemble forecasts were generated for 100 forecast cases in mid-January to mid-March 2016. The sets differed in their 1) inclusion or exclusion of additional observations collected over the eastern Pacific during the El Niño Rapid Response (ENRR) field campaign, 2) use of a hybrid 4D–EnVar versus a pure EnKF DA method to prepare the initial conditions, and 3) inclusion or exclusion of stochastic parameterizations in the forecast model. The Control forecast set used the ENRR observations, hybrid DA, and stochastic parameterizations. Errors of the ensemble-mean forecasts in this Control set were compared with those in the other sets, with emphasis on the upper-tropospheric geopotential heights and vorticity, midtropospheric vertical velocity, column-integrated precipitable water, near-surface air temperature, and surface precipitation. In general, the forecast errors were found to be only slightly sensitive to the additional ENRR observations, more sensitive to the DA methods, and most sensitive to the inclusion of stochastic parameterizations in the model, which reduced errors globally in all the variables considered except geopotential heights in the tropical upper troposphere. The reduction in precipitation errors, determined with respect to two independent observational datasets, was particularly striking.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Monthly Weather Review Vol. 147, No. 7 ( 2019-07-01), p. 2433-2449
    In: Monthly Weather Review, American Meteorological Society, Vol. 147, No. 7 ( 2019-07-01), p. 2433-2449
    Abstract: Given the network of satellite and aircraft observations around the globe, do additional in situ observations impact analyses within a global forecast system? Despite the dense observational network at many levels in the tropical troposphere, assimilating additional sounding observations taken in the eastern tropical Pacific Ocean during the 2016 El Niño Rapid Response (ENRR) locally improves wind, temperature, and humidity 6-h forecasts using a modern assimilation system. Fields from a 50-km reanalysis that assimilates all available observations, including those taken during the ENRR, are compared with those from an otherwise-identical reanalysis that denies all ENRR observations. These observations reveal a bias in the 200-hPa divergence of the assimilating model during a strong El Niño. While the existing observational network partially corrects this bias, the ENRR observations provide a stronger mean correction in the analysis. Significant improvements in the mean-square fit of the first-guess fields to the assimilated ENRR observations demonstrate that they are valuable within the existing network. The effects of the ENRR observations are pronounced in levels of the troposphere that are sparsely observed, particularly 500–800 hPa. Assimilating ENRR observations has mixed effects on the mean-square difference with nearby non-ENRR observations. Using a similar system but with a higher-resolution forecast model yields comparable results to the lower-resolution system. These findings imply a limited improvement in large-scale forecast variability from additional in situ observations, but significant improvements in local 6-h forecasts.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Monthly Weather Review Vol. 150, No. 6 ( 2022-06), p. 1317-1334
    In: Monthly Weather Review, American Meteorological Society, Vol. 150, No. 6 ( 2022-06), p. 1317-1334
    Abstract: The U.S. operational global data assimilation system provides updated analysis and forecast fields every 6 h, which is not frequent enough to handle the rapid error growth associated with hurricanes or other storms. This motivates development of an hourly updating global data assimilation system, but observational data latency can be a barrier. Two methods are presented to overcome this challenge: “catch-up cycles,” in which a 1-hourly system is reinitialized from a 6-hourly system that has assimilated high-latency observations; and “overlapping assimilation windows,” in which the system is updated hourly with new observations valid in the past 3 h. The performance of these methods is assessed in a near-operational setup using the Global Forecast System by comparing forecasts with in situ observations. At short forecast leads, the overlapping windows method performs comparably to the 6-hourly control in a simplified configuration and outperforms the control in a full-input configuration. In the full-input experiment, the catch-up cycle method performs similarly to the 6-hourly control; reinitializing from the 6-hourly control does not appear to provide a significant benefit. Results suggest that the overlapping windows method performs well in part because of the hourly update cadence, but also because hourly cycling systems can make better use of available observations. The impact of the hourly update relative to the 6-hourly update is most significant during the first forecast day, while impacts on longer-range forecasts were found to be mixed and mostly insignificant. Further effort toward an operational global hourly updating system should be pursued.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 19 ( 2020-10-01), p. 8415-8437
    Abstract: Four state-of-the-art satellite-based estimates of ocean surface latent heat fluxes (LHFs) extending over three decades are analyzed, focusing on the interannual variability and trends of near-global averages and regional patterns. Detailed intercomparisons are made with other datasets including 1) reduced observation reanalyses (RedObs) whose exclusion of satellite data renders them an important independent diagnostic tool; 2) a moisture budget residual LHF estimate using reanalysis moisture transport, atmospheric storage, and satellite precipitation; 3) the ECMWF Reanalysis 5 (ERA5); 4) Remote Sensing Systems (RSS) single-sensor passive microwave and scatterometer wind speed retrievals; and 5) several sea surface temperature (SST) datasets. Large disparities remain in near-global satellite LHF trends and their regional expression over the 1990–2010 period, during which time the interdecadal Pacific oscillation changed sign. The budget residual diagnostics support the smaller RedObs LHF trends. The satellites, ERA5, and RedObs are reasonably consistent in identifying contributions by the 10-m wind speed variations to the LHF trend patterns. However, contributions by the near-surface vertical humidity gradient from satellites and ERA5 trend upward in time with respect to the RedObs ensemble and show less agreement in trend patterns. Problems with wind speed retrievals from Special Sensor Microwave Imager/Sounder satellite sensors, excessive upward trends in trends in Optimal Interpolation Sea Surface Temperature (OISST AVHRR-Only) data used in most satellite LHF estimates, and uncertainties associated with poor satellite coverage before the mid-1990s are noted. Possibly erroneous trends are also identified in ERA5 LHF associated with the onset of scatterometer wind data assimilation in the early 1990s.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 99, No. 5 ( 2018-05), p. 975-1001
    Abstract: Forecasts by mid-2015 for a strong El Niño during winter 2015/16 presented an exceptional scientific opportunity to accelerate advances in understanding and predictions of an extreme climate event and its impacts while the event was ongoing . Seizing this opportunity, the National Oceanic and Atmospheric Administration (NOAA) initiated an El Niño Rapid Response (ENRR), conducting the first field campaign to obtain intensive atmospheric observations over the tropical Pacific during El Niño. The overarching ENRR goal was to determine the atmospheric response to El Niño and the implications for predicting extratropical storms and U.S. West Coast rainfall. The field campaign observations extended from the central tropical Pacific to the West Coast, with a primary focus on the initial tropical atmospheric response that links El Niño to its global impacts. NOAA deployed its Gulfstream-IV (G-IV) aircraft to obtain observations around organized tropical convection and poleward convective outflow near the heart of El Niño. Additional tropical Pacific observations were obtained by radiosondes launched from Kiritimati , Kiribati, and the NOAA ship Ronald H. Brown , and in the eastern North Pacific by the National Aeronautics and Space Administration (NASA) Global Hawk unmanned aerial system. These observations were all transmitted in real time for use in operational prediction models. An X-band radar installed in Santa Clara, California, helped characterize precipitation distributions. This suite supported an end-to-end capability extending from tropical Pacific processes to West Coast impacts. The ENRR observations were used during the event in operational predictions. They now provide an unprecedented dataset for further research to improve understanding and predictions of El Niño and its impacts.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  International Journal of Climatology Vol. 41, No. S1 ( 2021-01)
    In: International Journal of Climatology, Wiley, Vol. 41, No. S1 ( 2021-01)
    Abstract: While gridded seasonal pressure reconstructions poleward of 60°S extending back to 1905 have been recently completed, their skill has not been assessed prior to 1958. To provide a more thorough evaluation of the skill and performance in the early 20th century, these reconstructions are compared to other gridded datasets, historical data from early Antarctic expeditions, ship records, and temporary bases. Overall, the comparison confirms that the reconstruction uncertainty of 2–4 hPa (evaluated after 1979) over the Southern Ocean is a valid estimate of the reconstruction error in the early 20th century. Over the interior and near the coast of Antarctica, direct comparisons with historical data are challenged by elevation‐based reductions to sea level pressure. In a few cases, a simple linear adjustment of the reconstruction to sea level matches the historical data well, but in other cases, the differences remain greater than 10 hPa. Despite these large errors, comparisons with continuous multi‐season observations demonstrate that aspects of the interannual variability are often still captured, suggesting that the reconstructions have skill representing variations on this timescale, even if it is difficult to determine how well they capture the mean pressure at these higher elevations. Additional comparisons with various 20th‐century reanalysis products demonstrate the value of assimilating the historical observations in these datasets, which acts to substantially reduce the reanalysis ensemble spread, and bring the reanalysis ensemble mean within the reconstruction and observational uncertainty.
    Type of Medium: Online Resource
    ISSN: 0899-8418 , 1097-0088
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1491204-1
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...