GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Oncotarget, Impact Journals, LLC, Vol. 7, No. 13 ( 2016-03-29), p. 16581-16592
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. LB-003-LB-003
    Abstract: Quantitative metrics to objectively assess the fidelity of cancer models, such as cell lines, organoids, or patient-derived xenografts (PDXs), remain elusive, with histological criteria or the presence of specific mutations often used as driving principles. However, focusing on individual mutations inevitably ignores the effect of a large complement of additional, model-specific genetic and epigenetic events. As a result, effective model fidelity assessment is best performed a posteriori, for instance, by determining whether dependencies identified in a specific tumor model (e.g., a cell line or organoid) are recapitulated in vivo in PDXs or in patients, via pre-clinical or clinical trials. Unfortunately, such an approach is inefficient and time-consuming, creating an urgent need for methodologies capable of effectively and quantitatively assessing model fidelity a priori. This unmet need motivated us to develop and test a quantitative, molecular-level framework (OncoMatch), to assess the fidelity of a given tumor model in the context of a specific biological question, and in particular for addressing issues of drug sensitivity. We addressed this challenge by integrating two independent computational metrics to assess: (a) conservation of regulatory networks inferred from patient-derived samples in a model of interest, and; (b) overlap of master regulator (MR) proteins–i.e., proteins representing the mechanistic determinants of the transcriptional state associated with the phenotype of interest–as inferred from patient-derived and model-derived samples. We show that these molecular-level criteria can effectively identify cell lines that recapitulate patient-specific drug mechanism of action and drug sensitivity, independent of histological consideration. By leveraging gene expression profiles of drug-perturbations in primary cells and explants derived from gastroenteropancreatic-neuroendocrine tumor (GEP-NET) patients, we show that H-STS, an EBV-immortalized lymphoblastoid cell line, represents a high-fidelity model for the assessment of drug mechanism of action and drug sensitivity in these tumors. In particular, our analysis shows highly significant conservation of drug mechanism of action for 60 of 95 profiled drugs (63%, p & lt; 10-10, Bonferroni's corrected), and higher conservation among drugs exhibiting greater bioactivity in this context. This rate is comparable and, in fact higher than what is achieved using tumor-type-matched cell line pairs representative of glioma, pancreatic and prostate carcinoma, and dramatically higher than the conservation observed between unrelated models, which we used as negative controls. Based on this systematic analysis, OncoMatch represents a valuable addition to our repertoire of tools for prioritizing cell lines, organoids and patient-derived xenograft models as high-fidelity human cancer models. We provide comprehensive prioritization of 921 cell lines as potential high-fidelity models for 10,024 human tumor samples in TCGA. This represents an actionable resource to guide selection of cell line models for specific drug mechanism of action and drug sensitivity studies. Citation Format: Mariano J. Alvarez, Yan Pengrong, Mary L. Alpaugh, Michaela Bowden, Ewa T. Sicinska, Chensheng W. Zhou, Charles Karan, Ronald B. Realubit, Prabhjot S. Mundi, Adina Grunn, Jager Dirk, John A. Chabot, Antonio T. Fojo, Paul E. Oberstein, Hanina Hibshoosh, Jeffrey W. Milsom, Matthew H. Kulke, Massimo Loda, Gabriela Chiosis, Diane L. Reidy-Lagunes, Andrea Califano. OncoMatch: Unbiased, quantitative assessment of cancer model fidelity for drug sensitivity and mechanism of action elucidation [abstract] . In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr LB-003.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Biotechnology, Springer Science and Business Media LLC, Vol. 35, No. 12 ( 2017-12), p. 1211-1211
    Type of Medium: Online Resource
    ISSN: 1087-0156 , 1546-1696
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 1494943-X
    detail.hit.zdb_id: 1311932-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 2996-2996
    Abstract: Metabolic lesions with profound effects on epigenetic regulation are widely implicated in cancer, yet the mechanistic links between this epigenetic dysregulation and tumorigenesis remain unclear. Succinate dehydrogenase (SDH) deficiency, responsible for a subset of gastrointestinal stromal tumors (GISTs), causes accumulation of the metabolite succinate and DNA hypermethylation. We identified convergent mechanisms involving altered chromosomal conformation and pseudo-hypoxia that mediate the tumorigenic effects of SDH deficiency in GIST. To investigate epigenetic alterations in this disease, we created epigenetic maps of 14 clinical GIST specimens; including KIT and PDGFRA mutant, and SDH-deficient tumors. We characterized the landscapes of enhancers, genetic regulatory elements which can drive gene expression, through histone H3 lysine 27 acetylation chromatin immunoprecipitation sequencing (ChIP-seq). We characterized both the DNA methylation and CTCF occupancy of insulators, elements which help control chromatin conformation and restrict enhancer-gene interactions, through hybrid selection bisulfite sequencing and CTCF ChIP-seq, respectively. Analyzing these data, we uncovered thousands of putative insulators where DNA methylation replaced CTCF binding in SDH-deficient GISTs. One of the strongest disrupted insulators protected the receptor tyrosine kinase and known driver of GIST, c-KIT, from a nearby superenhancer. Chromatin conformation studies confirmed an SDH-deficient-specific interaction of this superenhancer with the KIT gene. CRISPR-mediated excision of the insulator in an SDH-intact GIST model resulted in enhancer interaction and KIT upregulation. Immunohistochemical studies confirm strong expression of c-KIT in SDH-deficient GIST clinical samples. SDH deficiency has also been reported to cause pseudohypoxia in tumors. We confirmed that the enhancer landscape of SDH-deficient tumors had a signature of pseudohypoxia. Additionally, following pseudohypoxia induction in a SDH-intact GIST model, the c-KIT ligand Stem Cell Factor (SCF/KITLG) was upregulated 12-fold. While activating KIT mutations drive the majority (~75%) of GIST tumors and are mutually exclusive with SDH deficiency, we show that a primary consequence of SDH loss is in fact induction of KIT signaling. Our findings demonstrate how metabolic lesions can provide alternate epigenetic mechanisms to activate classic tumorigenic pathways in the absence of canonical genetic mutations. Citation Format: William A. Flavahan, Yotam Drier, Sarah E. Johnstone, Daniel R. Tarjan, Esmat Hegazi, Ewa T. Sicinska, Matthew L. Hemming, Chandrajit P. Raut, Jason L. Hornick, George D. Demetri, Bradley E. Bernstein. Insulator dysfunction and epigenetic oncogene activation in SDH-deficient gastrointestinal stromal tumor [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 2996.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 18_Supplement ( 2022-09-15), p. A013-A013
    Abstract: Advanced GIST is characterized by genomic perturbations of key cell cycle regulators. Oncogenic activation of CDK4/6 results in RB1 inactivation and cell cycle progression. Given that single-agent CDK4/6 inhibitor (CDK4/6i) therapy failed to show clinical activity in advanced GIST, we evaluated strategies for maximizing response to therapeutic CDK4/6 inhibition. Targeted next-generation sequencing and multiplexed protein imaging were used to detect cell cycle regulator aberrations in GIST clinical samples (N=18), including 8 metastatic TKI-resistant GISTs. Multiple metastases were analyzed in 3 patients. The impact of CDK2i (CDK2 inhibitor-II), CDK4/6i (palbociclib or abemaciclib), and CDK2/4/6i (PF-06873600) was determined through cell proliferation and protein detection assays in vitro and in vivo. Mechanisms of acquired CDK2i and CDK4/6i resistance were characterized in GIST cell lines after long-term exposure. The results demonstrate recurrent genomic aberrations in cell cycle regulators causing co-activation of the CDK2 and CDK4/6 pathways. Identical aberrations of p16, RB1, and TP53 were present in all metastases from 3 patients. We show that therapeutic co-targeting of CDK2 and CDK4/6 is synergistic in GIST cell lines with intact RB1, through inhibition of RB1 hyperphosphorylation and cell proliferation (P & lt;0.01). Intact RB1 predicted response to treatment, whereas RB1-deficient models were resistant. Moreover, we identify RB1 inactivation and a novel oncogenic cyclin D1 resulting from an intragenic rearrangement (CCND1::chr11.g:70025223) as mechanisms of acquired CDK inhibitor resistance in GIST. The CCND1 rearrangement deleted the cyclin D1 C-terminal Thr286 and Thr288 residues which mediate cyclin D1 proteasomal degradation, resulting in overexpression of an abnormal cyclin D1. CDK inhibitor resistance properties were corroborated by lentiviral transduction of the CCND1 fusion gene into fusion-negative GIST, leiomyosarcoma, and breast cancer cells. These studies establish the biologic rationale for CDK2 and CDK4/6 co-inhibition as therapeutic strategy in patients with advanced GIST, including patients with metastatic GIST progressing on TKIs. In addition, these findings expand the spectrum of potential CDK inhibitor resistance mechanisms with translational potential for improving cell cycle targeted therapies in other cancer types. Citation Format: Inga-Marie Schaefer, Matthew L. Hemming, Meijun Z. Lundberg, Matthew P. Serrata, Isabel Goldaracena, Ninning Liu, Peng Yin, Joao A. Paulo, Steven P. Gygi, Suzanne George, Jeffrey A. Morgan, Monica M. Bertagnolli, Ewa T. Sicinska, Adrian Mariño-Enríquez, Jason L. Hornick, Chandrajit P. Raut, George D. Demetri, Wen-Bin Ou, Sinem K. Saka, Jonathan A. Fletcher. CDK2 and CDK4/6 inhibition in GIST: Mechanisms of response and resistance [abstract]. In: Proceedings of the AACR Special Conference: Sarcomas; 2022 May 9-12; Montreal, QC, Canada. Philadelphia (PA): AACR; Clin Cancer Res 2022;28(18_Suppl):Abstract nr A013.
    Type of Medium: Online Resource
    ISSN: 1557-3265
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2017-03-08)
    Abstract: KIT , PDGFRA , NF1 and SDH mutations are alternate initiating events, fostering hyperplasia in gastrointestinal stromal tumours (GISTs), and additional genetic alterations are required for progression to malignancy. The most frequent secondary alteration, demonstrated in ∼70% of GISTs, is chromosome 14q deletion. Here we report hemizygous or homozygous inactivating mutations of the chromosome 14q MAX gene in 16 of 76 GISTs (21%). We find MAX mutations in 17% and 50% of sporadic and NF1-syndromic GISTs, respectively, and we find loss of MAX protein expression in 48% and 90% of sporadic and NF1-syndromic GISTs, respectively, and in three of eight micro-GISTs, which are early GISTs. MAX genomic inactivation is associated with p16 silencing in the absence of p16 coding sequence deletion and MAX induction restores p16 expression and inhibits GIST proliferation. Hence, MAX inactivation is a common event in GIST progression, fostering cell cycle activity in early GISTs.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Journal of Pathology, Wiley, Vol. 234, No. 2 ( 2014-10), p. 190-202
    Abstract: Genomic amplification of the c‐Jun proto‐oncogene has been identified in ∼30% of dedifferentiated liposarcomas ( DDLPS ), but the functional contribution of c‐Jun to the progression of DDLPS remains poorly understood. In previous work we showed that knock‐down of c‐Jun by RNA interference impaired the in vitro proliferation and in vivo growth of a DDLPS cell line ( LP6 ) with genomic amplification of the c‐Jun locus. Here, we used gene expression analysis and functional studies in a broad panel of cell lines to further define the role of c‐Jun in DDLPS and other soft tissue sarcomas. We show that c‐Jun knock‐down impairs transition through the G 1 phase of the cell cycle in multiple DDLPS cell lines. We also found that high levels of c‐Jun expression are both necessary and sufficient to promote DDLPS cell migration and invasion in vitro . Our data suggest that high levels of c‐Jun enhance motility in part by driving the expression of ENPP2 /Autotaxin. c‐Jun over‐expression has minimal effects on in vitro proliferation but substantially enhances the in vivo growth of weakly tumourigenic DDLPS cell lines. Finally, we provide evidence that c‐Jun genomic amplification and over‐expression may have similar functional consequences in other types of soft tissue sarcoma. Our data suggest a model in which relatively low levels of c‐Jun are sufficient for in vitro proliferation, but high levels of c‐Jun enhance invasiveness and capacity for in vivo tumour growth. These observations provide an explanation for the selective advantage provided by c‐Jun genomic amplification in vivo and suggest that sarcomas with elevated c‐Jun levels are likely to have a particularly high malignant potential. Data from exon array and RNA ‐Seq experiments have been deposited in the GEO database (Accession No. GSE57531 ). Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
    Type of Medium: Online Resource
    ISSN: 0022-3417 , 1096-9896
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 1475280-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cell, Elsevier BV, Vol. 184, No. 25 ( 2021-12), p. 6119-6137.e26
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature Biotechnology, Springer Science and Business Media LLC, Vol. 35, No. 6 ( 2017-06), p. 569-576
    Type of Medium: Online Resource
    ISSN: 1087-0156 , 1546-1696
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 1494943-X
    detail.hit.zdb_id: 1311932-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Clinical Chemistry, Oxford University Press (OUP), Vol. 45, No. 12 ( 1999-12-01), p. 2183-2190
    Abstract: Background: Fatty acid ethyl esters (FAEEs) are cytotoxic nonoxidative ethanol metabolites produced by esterification of fatty acids and ethanol. FAEEs are detectable in blood up to 24 h after ethanol consumption. The objective of this study was to assess the impact of gender, serum or plasma triglyceride concentration, time and temperature of specimen storage, type of alcoholic beverage ingested, and the rate of ethanol consumption on FAEE concentrations in plasma or serum. Methods: For some studies, subject were recruited volunteers; in others, residual blood samples after ethanol quantification were used. FAEEs were isolated by solid-phase extraction and quantified by gas chromatography–mass spectrometry. Results: For weight-adjusted amounts of ethanol intake, FAEE concentrations were twofold greater for men than women (P ≤0.05). Accounting for triglycerides improved the correlation between blood ethanol concentrations and FAEE concentrations for both men (from r = 0.640 to r = 0.874) and women (from r = 0.619 to r = 0.673). FAEE concentrations did not change when samples were stored at or below 4 °C, but doubled when stored at room temperature for ≥24 h. The type of alcoholic beverage and rate of consumption did not affect FAEE concentrations. Conclusion: These studies advance plasma and serum FAEE measurements closer to implementation as a clinical test for ethanol intake.
    Type of Medium: Online Resource
    ISSN: 0009-9147 , 1530-8561
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 1999
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...